Most recommender systems recommend a list of items. The user examines the list, from the first item to the last, and typically clicks on the first item that attracts the user. The cascade model [10] is a popular model to formulate this kind of user behavior. The items before the first clicked item are not attractive, because the user examines these items but does not click on them. The items after the first attractive item are unobserved, because the user never examines these items. The key assumption in the cascade model is that each item attracts the user independently of the other items. Under this assumption, the optimal solution in the cascade model, the list of K items that maximizes the probability that the user finds an attractive item, are K most attractive items. The cascade model is simple, intuitive, and surprisingly effective in explaining user behavior [7].

In this paper, we study an online learning variant of the cascade model, which is known as cascading bandits [15]. In this model, the learning agent does not know the preferences of the user over recommended items and the goal is to learn them by interacting with the user. At time t, the agent recommends to the user a list of K items out of L candidate items and observes the click of the user. If the user clicks on an item, the agent receives a reward of one. If the user does not click on any item, the agent receives a reward of zero. The performance of the learning agent is evaluated by its cumulative reward in n steps, which is the total number of clicks in n steps. The goal of the agent is to maximize it.

Kveton et al. [15] proposed two computationally and sample efficient algorithms for cascading bandits. They also proved a $\Omega(L - K)$ lower bound on the regret in cascading bandits, which shows that the regret grows linearly with the
number of candidate items L. Therefore, cascading bandits are impractical for learning when L is large. Unfortunately, this setting is common practice. For instance, consider the number of candidate items L typical to the user at least once, which means at least 10k interactions with the recommender system, before the system starts behaving intelligently. Such a system would clearly be impractical. The main contribution of our work is that we propose linear cascading bandits, an online learning framework that makes learning in cascading bandits practical at scale. The key step in our approach is that we assume that the attraction probabilities of items can be predicted from the features of items. Features are often available in practice or can be easily derived.

To the best of our knowledge, this is the first work that studies a top-K recommender problem in the bandit setting with cascading feedback and context. Specifically, we make four contributions. First, we propose linear cascading bandits, a variant of cascading bandits where we make an additional assumption that the attraction probabilities of items are a linear function of the features of items. This assumption is the key step in designing a sample efficient learning algorithm for our problem. Second, we propose two computationally efficient learning algorithms, CascadeLinTS and CascadeLinUCB, which are motivated by Thompson sampling (TS) [23, 3] and linear UCB [1, 24]. We believe this is the first application of linear generalization in the cascade model under partial monitoring. Third, we derive an upper bound on the regret of CascadeLinUCB and discuss why a similar upper bound should hold for CascadeLinTS. Finally, we evaluate CascadeLinTS on a range of recommendation problems; in the domains of restaurant, music, and movie recommendations; and demonstrate that it performs well even when our modeling assumptions are violated.

Our paper is organized as follows. In Section 2, we review the cascade model and cascading bandits. In Section 3, we present linear cascading bandits; propose CascadeLinTS and CascadeLinUCB; and bound the regret of CascadeLinTS. In Section 4, we evaluate CascadeLinTS on several recommendation problems. We review related work in Section 5 and conclude in Section 6.

To simplify exposition, we denote random variables by boldface letter. We define $|A| = \{1, \ldots, n\}$ and denote the cardinality of set A by $|A|$.

2 BACKGROUND

In this section, we review the cascade model [10] and cascading bandits [15].

2.1 Cascade Model

The cascade model [10] is a popular model of user behavior. In this model, the user is recommended a list of K items $A = (a_1, \ldots, a_K) \in \Pi_K(E)$, where $\Pi_K(E)$ is the set of all K-permutations of some ground set $E = [L]$, which is the set of all possibly recommended items. The model is parameterized by L attraction probabilities $\bar{w} \in [0, 1]^E$ and the user scans the list A sequentially from the first item a_1 to the last a_K. After the user examines item a_k, the item attracts the user with probability $\bar{w}(a_k)$, independently of the other items. If the user is attracted by item a_k, the user clicks on it and stop examining the remaining items. If the user is not attracted by item a_k, the user examines the next recommended item a_{k+1}. It is easy to see that the probability that item a_k is examined is $\prod_{i=1}^{k-1}(1 - \bar{w}(a_i))$, and that the probability that at least one item in A is attractive is $1 - \prod_{i=1}^{K}(1 - \bar{w}(a_i))$. This objective is maximized by K most attractive items.

The cascade model is surprising effective in explaining how users scan lists of items [7]. The reason is that lower ranked items typically do not get clicked because the user is attracted by higher ranked items, and never examines the rest of the recommended list.

2.2 Cascading Bandits

Kveton et al. [15] proposed a learning variant of the cascading model, which is known as a cascading bandit. Formally, a cascading bandit is a tuple $B = (E, P, K)$, where $E = [L]$ is a ground set of L items, P is a probability distribution over a binary hypercube $\{0, 1\}^E$, and $K \leq L$ is the number of recommended items.

The learning agent interacts with our problem as follows. Let $(r_t)_{t=1}^n$ be an i.i.d. sequence of n weights drawn from P, where $w_t \in \{0, 1\}^E$ and $w_t(e)$ is the preference of the user for item e at time t. More precisely, $w_t(e) = 1$ if and only if item e attracts the user at time t. At time t, the agent recommends a list of K items $A_t = (a_t^1, \ldots, a_t^K) \in \Pi_K(E)$. The list is a function of the observations of the agent up to time t. The user examines the list, from the first item a_t^1 to the last a_t^K, and clicks on the first attractive item. If the user is not attracted by any item, the user does not click on any item. Then time increases to $t + 1$.

The reward of the agent at time t is one if and only if the user is attracted by at least one item in A_t. Formally, the reward at time t can be expressed as $r_t = f(A_t, w_t)$, where $f : \Pi_K(E) \times [0, 1]^E \rightarrow [0, 1]$ is a reward function and we define it as:

$$f(A, w) = 1 - \prod_{k=1}^{K}(1 - w(a_k))$$

for any $A = (a_1, \ldots, a_K) \in \Pi_K(E)$ and $w \in [0, 1]^E$. The
agent at time t receives feedback:
\[
C_t = \min \left\{ k \in [K] : w_t(a^*_k) = 1 \right\},
\]
where we assume that $\min \emptyset = \infty$. The feedback C_t is the click of the user. If $C_t \leq K$, the user clicks on item C_t. If $C_t = \infty$, the user does not click on any item. Since the user clicks on the first attractive item in the list, the observed weights of all recommended items at time t can be expressed as a function of C_t:
\[
w_t(a^*_k) = \mathbb{1}\{C_t = k\} \quad k = 1, \ldots, \min\{C_t, K\}. \tag{1}
\]
Accordingly, we say that item e is observed at time t if $e = a^*_k$ for some $k \in [\min\{C_t, K\}]$.
Let the attraction weights of items in the ground set E be distributed independently as:
\[
P(w) = \prod_{e \in E} \text{Ber}(w(e); \bar{w}(e)),
\]
where $\text{Ber}(\cdot; \bar{w})$ is a Bernoulli distribution with mean \bar{w}. Then the expected reward for list $A \in \Pi_K(E)$, the probability that at least one item in A is satisfactory, can be expressed as $\mathbb{E} \left[f(A, w) \right] = f(A, \bar{w})$, and depends only on the attraction probabilities of individual items in A. Therefore, it is sufficient to learn a good approximation to \bar{w} to act optimally.

The agent’s policy is evaluated by its expected cumulative regret:
\[
R(n) = \mathbb{E} \left[\sum_{t=1}^{n} R(A_t, w_t) \right], \tag{2}
\]
where $R(A_t, w_t) = f(A^*, w_t) - f(A_t, w_t)$ is the instantaneous stochastic regret of the agent at time t and:
\[
A^* = \arg\max_{A \in \Pi_K(E)} f(A, \bar{w})
\]
is the optimal list of items, the list that maximizes the reward at any time t. For simplicity of exposition, we assume that the optimal solution, as a set, is unique.

2.3 Algorithm CascadeUCB1

Kveton et al. [15] proposed and analyzed two learning algorithms for cascading bandits, CascadeUCB1 and CascadeKL-UCB. In this section, we review CascadeUCB1.

CascadeUCB1 belongs to the family of UCB algorithms. The algorithm operates in three stages. First, it computes the upper confidence bounds (UCBs) $U_t \in [0, 1]^E$ on the attraction probabilities of all items in E. The UCB of item e at time t is:
\[
U_t(e) = \tilde{w}_{T_{t-1}(e)}(e) + c_{t-1} \cdot T_{t-1}(e), \tag{3}
\]
where $\tilde{w}_s(e)$ is the average of s observed attraction weights of item e, $T_t(e)$ is the number of times that item e is observed in t steps, and:
\[
c_{t,s} = \sqrt{(1.5 \log t)/s}
\]
is the radius of a confidence interval around $\tilde{w}_s(e)$ after t steps such that $\tilde{w}(e) \in [\tilde{w}_s(e) - c_{t,s}, \tilde{w}_s(e) + c_{t,s}]$ holds with high probability. Second, CascadeUCB1 recommends a list of K items with largest UCBs:
\[
A_t = \arg\max_{A \in \Pi_K(E)} f(A, U_t).
\]

Finally, after the user provides feedback C_t, the algorithm updates its estimates of the attraction probabilities $\tilde{w}(e)$ based on the observed weights of items, which are defined in (1) for all $e = a^*_k$ such that $k \leq C_t$.

3 LINEAR CAScadIng BANDITS

Kveton et al. [15] showed that the n-step regret of CascadeUCB1 is $O((L - K)/(1/\Delta) \log n)$, where L is the number of items in ground set E; K is the number of recommended items; and Δ is the gap, which measures the sample complexity. This means that the regret increases linearly with the number of items L. As a result, CascadeUCB1 is not practical when L is large. Unfortunately, this setting is common practice. For instance, consider the problem of learning a personalized recommender for 10 movies from the ground set of 100k movies. To learn, CascadeUCB1 would need to show each movie to the user at least once, which means that the algorithm would require at least 10k interactions with the user to start behaving intelligently. This is clearly impractical.

In this work, we propose practical algorithms for large-scale cascading bandits, in the setting where L is large. The key assumption, which allows us to learn efficiently, is that we assume that the attraction probability of each item e, $\tilde{w}(e)$, can be approximated by a linear combination of some known d-dimensional feature vector $x_e \in \mathbb{R}^{d \times 1}$ and an unknown d-dimensional parameter vector of $\theta^* \in \mathbb{R}^{d \times 1}$, which is shared among all items. More precisely, we assume that there exists $\theta^* \in \Theta$ such that:
\[
\tilde{w}(e) \approx x_e^\top \theta^* \tag{4}
\]
for any $e \in E$. The features are problem specific and we discuss how to construct them in Section 4.3. We propose two learning algorithms, which we call cascading linear Thompson sampling (CascadeLinTS) and cascading linear UCB (CascadeLinUCB). We prove that when the above linear generalization is perfect, the regret of CascadeLinUCB is independent of L and sublinear in n. Therefore, CascadeLinUCB is suitable for learning to recommend from large ground sets E. We also discuss why a similar regret bound should hold for CascadeLinTS, though we do not prove this bound formally.
3.1 Algorithms

Our learning algorithms are based on the ideas of Thompson sampling [23, 3] and linear UCB [1], and motivated by the recent work of Wen et al. [24], which proposes computationally and sample efficient algorithms for large-scale stochastic combinatorial semi-bandits. The pseudocode of both algorithms is in Algorithms 1 and 2, and we outline them below.

Both CascadeLinTS and CascadeLinUCB represent their past observations as a positive-definite matrix $M_t \in \mathbb{R}^{d \times d}$ and a vector $B_t \in \mathbb{R}^{d \times 1}$. Specifically, let X_t be a matrix whose rows are the feature vectors of all observed items in t steps and Y_t be a column vector of all observed attraction weights in t steps. Then:

$$M_t = \sigma^{-2}X_t^T X_t + I_d$$

is the gram matrix in t steps and:

$$B_t = X_t^T Y_t,$$

where I_d is a $d \times d$ identity matrix and $\sigma > 0$ is parameter that controls the learning rate.3

Both CascadeLinTS and CascadeLinUCB operate in three stages. First, they estimated the expected weight of each item e based on their model of the world. CascadeLinTS randomly samples parameter vector θ_t from a normal distribution, which approximates its posterior on θ^*, and then estimates the expected weight as $x_t^T \theta_t$. CascadeLinUCB computes an upper confidence bound $U_t(e)$ for each item e. Second, both algorithms choose the optimal list A_t with respect to their estimates. Finally, they receive feedback, and update M_t and B_t using Algorithm 3.

3 Ideally, σ^2 should be the variance of the observation noises. However, based on recent literature [24], we believe that both algorithms will perform well for a wide range of σ^2.

We would like to emphasize that both CascadeLinTS and CascadeLinUCB are computationally efficient. In practice, we would update M_t^{-1} instead of M_t. In particular, note that:

$$M_t \leftarrow M_t + \sigma^{-2} x_e x_e^T$$

can be equivalently updated as:

$$M_t^{-1} \leftarrow M_t^{-1} - \frac{M_t^{-1} x_e x_e^T M_t^{-1}}{x_e^T M_t^{-1} x_e + \sigma^2},$$

and hence M_t^{-1} can be updated incrementally and computationally efficiently in $O(d^2)$ time. It is easy to see that the per-step time complexities of both CascadeLinTS and CascadeLinUCB are $O(L(d^2 + K))$.

3.2 Analysis and Discussion

We first derive a regret bound on CascadeLinUCB, under the assumptions that (1) $\bar{w}(e) = x_e^T \theta^*$ for all $e \in E$ and (2) $\|x_e\|_2 \leq 1$ for all $e \in E$. Note that condition (2) can be always ensured by rescaling feature vectors. The regret bound is detailed below.

Theorem 1. Under the above assumptions, for any $\sigma > 0$ and any

$$c \geq \frac{1}{\sigma} \sqrt{d \log \left(1 + \frac{nK}{d\sigma^2}\right) + 2 \log (nK) + \|\theta^*\|_2},$$

\[\text{Algorithm 1 CascadeLinTS}

Inputs: Variance σ^2

```
// Initialization
M_0 \leftarrow I_d and B_0 \leftarrow 0

for all $t = 1, \ldots, n$ do
    $\theta_{t-1} \leftarrow \sigma^{-2}M_{t-1}^{-1}B_{t-1}$
    $\theta_t \sim N(\theta_{t-1}, M_{t-1}^{-1})$

// Recommend a list of $K$ items and get feedback
for all $k = 1, \ldots, K$ do
    $a_k^t \leftarrow \arg \max_{e \in \{k\}} \mathbb{E} \left( x_e^T \theta_t \right)$
A_t \leftarrow (a_1^t, \ldots, a_K^t)
Observe click $C_t \in \{1, \ldots, K, \infty\}$
Update statistics using Algorithm 3
```

\[\text{Algorithm 2 CascadeLinUCB}

Inputs: Variance σ^2, constant c (Section 3.2)

```
// Initialization
M_0 \leftarrow I_d and B_0 \leftarrow 0

for all $t = 1, \ldots, n$ do
    $\theta_{t-1} \leftarrow \sigma^{-2}M_{t-1}^{-1}B_{t-1}$
    for all $e \in E$ do
        $U_t(e) \leftarrow \min \left\{ x_e^T \theta_{t-1} + c \sqrt{x_e^T M_{t-1}^{-1} x_e}, 1 \right\}$

// Recommend a list of $K$ items and get feedback
for all $k = 1, \ldots, K$ do
    $a_k^t \leftarrow \arg \max_{e \in \{k\}} \mathbb{E} \left( x_e^T \theta_t \right)$
A_t \leftarrow (a_1^t, \ldots, a_K^t)
Observe click $C_t \in \{1, \ldots, K, \infty\}$
Update statistics using Algorithm 3
```

\[\text{Algorithm 3 Update of statistics in Algorithms 1 and 2}

$$M_t \leftarrow M_{t-1}$$
$$B_t \leftarrow B_{t-1}$$

for all $k = 1, \ldots, \min \{C_t, K\}$ do
 $e \leftarrow a_k^t$
 $M_t \leftarrow M_t + \sigma^{-2} x_e x_e^T$
 $B_t \leftarrow B_t + x_e I(C_t = k)$$
if we run CascadeLinUCB with parameters σ and c, then
\[
R(n) \leq 2cK \sqrt{\frac{dn \log \left[1 + \frac{nK}{d} \right]}{\log \left(1 + \frac{1}{\sigma^2} \right)}} + 1.
\]

Note that if we choose $\sigma = 1$ and
\[
c = \sqrt{d \log \left(1 + \frac{nK}{d} \right) + 2 \log (nK) + \eta},
\]
for some constant $\eta \geq \|\theta^*\|_2$, then $R(n) \leq \tilde{O}(Kd\sqrt{n})$ where the \tilde{O} notation hides logarithmic factors.

The proof is in Appendix and we outline it below. First, we define event $\mathcal{G}_{t,k} = \{ \text{item } a^*_k \text{ is examined in step } t \}$ for any time t and $k \in [K]$, and bound the n-step regret as
\[
R(n) \leq \mathbb{E} \left[\sum_{t=1}^{n} \sum_{k=1}^{K} \mathbb{I} \{ \mathcal{G}_{t,k} \} \left[\tilde{w}(a^*_k,t) - \tilde{w}(a_k^*) \right] \right],
\]
where $a_k^* \in \mathcal{A}$ is an optimal item in A^* matched to item a_k^* in step t. Second, we define an event
\[
\mathcal{E} = \left\{ |x^T_t (\tilde{\theta}_t - \theta^*)| \leq c \|x_t\|_{M^{-1}_t}, \forall t \leq n, \forall e \in E \right\},
\]
where $\|x_t\|_{M^{-1}_t} = \sqrt{x^T_t M^{-1}_t x_t}$. Then we prove a high probability bound $P(\mathcal{E}) \geq 1 - 1/nK$ for any c that satisfies the condition of Theorem 1. Finally, we show that by conditioning on \mathcal{E}, we have
\[
\sum_{t=1}^{n} \sum_{k=1}^{K} \mathbb{I} \{ \mathcal{G}_{t,k} \} \left[\tilde{w}(a^*_k,t) - \tilde{w}(a_k^*) \right]
\leq 2c \sum_{t=1}^{n} \sum_{k=1}^{K} \mathbb{I} \{ \mathcal{G}_{t,k} \} \|x_t\|_{M^{-1}_t}
\leq 2cK \sqrt{\frac{dn \log \left[1 + \frac{nK}{d} \right]}{\log \left(1 + \frac{1}{\sigma^2} \right)}} ,
\]
where the first inequality follows from the definition of \mathcal{E} and the second inequality follows from a worst-case bound. The bound in Theorem 1 follows from putting the above results together.

Recent work [21, 24] demonstrated close relationships between UCB-like algorithms and Thompson sampling algorithms in related bandit problems. Therefore, we believe that a similar regret bound to that in Theorem 1 also holds for CascadeLinTS. However, it is highly non-trivial to derive a regret bound for CascadeLinTS. Unlike in [24], CascadeLinTS cannot be analyzed from the Bayesian perspective because the Gaussian posterior is inconsistent with the fact that $\tilde{w}(c)$ is bounded in $[0, 1]$. Moreover, a subtle statistical dependence between partial monitoring and Thompson sampling prevents a frequentist analysis similar to that in [4]. Therefore, we leave the formal analysis of CascadeLinTS for future work. It is well known that Thompson sampling tends to outperform UCB-like algorithms in practice [3]. Therefore, we only empirically evaluate CascadeLinTS.

4 EXPERIMENTS

We validate CascadeLinTS on several problems of various sizes and from various domains. In each problem, we conduct several experiments that demonstrate that our approach is scalable and stable with respect to its tunable parameters, the number of recommended items K and the number of features d.

Our experimental section is organized as follows. In Section 4.1, we outline the experiments that are conducted on each dataset. In Section 4.2, we introduce our metrics and baselines. In Section 4.3, we describe how we construct the features of items E. We present our empirical results in the rest of the section.

4.1 Experimental Setting

All of our learning problems can be viewed as follows. The feedback of users is a matrix $W \in \{0, 1\}^{m \times L}$, where row i corresponds to user $i \in [m]$ and column j corresponds to item $j \in [L]$. Entry (i,j) of W, $W_{i,j} \in \{0, 1\}$, indicates that user i is attracted by item j. The user at time t, the row of W, is chosen at random from the pool of all users. Our goal is to learn the list of items A^*, the columns of W, that maximizes the probability that the user at time t is attracted by at least one recommended item.

In each of our problems, we conduct a set of experiments. In the first experiment, we compare CascadeLinTS to baselines (Section 4.2) and also evaluate its scalability. We experiment with three variants of our problems: $L = 16$ items, $L = 256$ items, and the maximum possible value of L in a given experiment. The number of recommended items is $K = 4$ and the number of features is $d = 20$.

In the second experiment, we show that the performance of CascadeLinTS is robust with respect to the number of features d, in the sense that d affects the performance but CascadeLinTS performs reasonably well for all settings of d. We experiment with three settings for the number of features: $d = 10$, $d = 20$, and $d = 40$. The ground set contains $L = 256$ items and the number of recommended items is $K = 4$.

In the third experiment, we evaluate CascadeLinTS on an interesting subset of each dataset, such as Rock Songs. The setting of this experiment is identical to the second experiment. This experiment validates that CascadeLinTS can also learn to recommend items in the context, of a subset of the dataset.

In the last experiment, we evaluate how the performance of
CascadeLinTS varies with the number of recommended items K. We experiment with three settings for the number of recommended items: $K = 4$, $K = 8$, and $K = 12$. The ground set contains $L = 256$ items and the number of features is $d = 20$.

All experiments are conducted for $n = 100k$ steps and averaged over 10 randomly initialized runs. The tunable parameter σ in CascadeLinTS is set to 1.

4.2 Metrics and Baselines

The performance of CascadeLinTS is evaluated by its expected cumulative regret, which is defined in (2). In most of our experiments, our modeling assumptions are violated. In particular, the items are not guaranteed to attract users independently because the attraction indicators $w_i(e)$ are correlated across items e. The result is that:

$$A^* = \arg\max_{A \in \Pi_0^d(E)} E[f(A, \mathbf{w})] > \arg\max_{A \in \Pi_0^d(E)} f(A, \bar{w}).$$

It is NP-hard to find A^*, because $E[f(A, \mathbf{w})]$ does not decompose into the product of expectations as we assume in our model (Section 2.2). However, since $E[f(A, \mathbf{w})]$ is submodular and monotone in A, a $(1 - 1/e)$ approximation to A^* can be computed greedily by iteratively adding items that attract most users that are not attracted by any previously added item. We denote this approximation by A^* and use it instead of the optimal solution.

We compare CascadeLinTS to two baselines. The first baseline is CascadeUCB1 (Section 2.3). This baseline does not leverage the structure of our problem and learns the attraction probability of each item e independently. The second baseline is RankedLinTS (Algorithm 4). This baseline is a variant of ranked bandits (Section 5), where the base bandit algorithm is LinTS. This base algorithm is the same as in CascadeLinTS. Therefore, any observed difference in the performance of cascading and ranked bandits must be due to the efficiency of using the base algorithm, and not the algorithm itself. In this sense, our comparison of CascadeLinTS and RankedLinTS is fair. The tunable parameter σ in RankedLinTS is also set to 1.

4.3 Features

In most recommender problems, good features of items are rarely available. Thus, they are typically learned from data [14]. As an example, in movie recommendations, all state of the art approaches are based on collaborative filtering rather than on the features of movies, such as movie genres.

Motivated by the successes of collaborative filtering in recommender systems, we derive the features of our items using low-rank matrix factorization. In particular, let $W \in \{0, 1\}^{m \times L}$ be our feedback matrix for m users and L items. We randomly divide the rows of W into two matrices, training matrix $W_{\text{train}} \in \{0, 1\}^{(m/2) \times L}$ and test matrix $W_{\text{test}} \in \{0, 1\}^{(m/2) \times L}$. We use W_{train} to learn the features of items and W_{test} in place of W to evaluate our learning algorithms. Most existing real-world recommender systems already have some data about their users. Such data can be used to construct W_{train}.

Let $W_{\text{train}} \approx U \Sigma V^T$ be rank-d truncated SVD of W_{train}, where $U \in \mathbb{R}^{(m/2) \times d}$, $\Sigma \in \mathbb{R}^{d \times d}$, and $V \in \mathbb{R}^{L \times d}$. Then the features of items are the rows of $V \Sigma$. Specifically, for each item $e \in E$ and feature $i \in [d]$, $x_e(i) = V_{e,i} \Sigma_{i,i}$.

4.4 Restaurant Recommendations

Our dataset is from Yelp Dataset Challenge\(^2\). This dataset has five parts, including business information, checkin information, review information, tip information, and user information. We only consider the business and review information. The dataset contains 78k businesses, out of which 11k are restaurants; and 2.2M reviews written by 550k users. We extract $L = 3k$ most reviewed restaurants and $m = 20k$ most reviewing users.

Our objective is to maximize the probability that the user is attracted by at least one recommended restaurant. We build the model of users from past review data and assume that the user is attracted by the restaurant if the user reviewed this restaurant before. This indicates that the user visited the restaurant at some point in time, likely because the restaurant attracted the user at that time.

\(^2\)https://www.yelp.com/dataset_challenge
Figure 1: The n-step regret of CascadeUCB1, CascadeLinTS and RankedLinTS on three problems. We vary the number of items in the ground set \(E \), from \(L = 16 \) to the maximum value in each problem.

4.4.1 Results

The results of our first experiment are reported in Fig. 1. When the ground set is small, \(L = 16 \), all compared methods perform similarly. In particular, the regret of CascadeLinTS is similar to that of RankedLinTS. The regret of CascadeUCB1 is about two times larger than that of CascadeLinTS. As the size of the ground set increases, the gap between CascadeLinTS and the other methods increases. In particular, when \(L = 3k \), the regret of CascadeUCB1 is orders of magnitude larger than that of CascadeLinTS, and the regret of RankedLinTS is almost three times larger.

In the second experiment (Fig. 2a), we observe that CascadeLinTS performs well for all settings of \(d \). When the number of features doubles to \(d = 40 \), the regret roughly doubles. When the number of features is halved to \(d = 10 \), the regret improves and is roughly halved.

In the third experiment (Fig. 2b), CascadeLinTS is evaluated on the subset of American Restaurants. This is the largest restaurant category in our dataset. We observe that CascadeLinTS can learn for any number of features \(d \), similarly to Fig. 2a.

In the last experiment (Fig. 2c), we observe that the regret of CascadeLinTS increases with the number of recommended items, from \(K = 4 \) to \(K = 8 \). This result is surprising and seems to contradict to Kveton et al. [15], who find both theoretically and empirically that the regret in cascading bandits decreases with the number of recommended items \(K \). We investigate this further and plot the cumulative reward of CascadeLinTS in Fig. 2d. The reward increases with \(K \), which is expected and validates that CascadeLinTS learns better policies for larger \(K \). Therefore, the increase in the regret in Fig. 2c must be due to the fact that the expected reward of the optimal solution, \(f(A^*, \bar{w}) \), increases faster with \(K \) than that of the learned policies. We believe that the optimal solutions for larger \(K \) are harder to learn because our modeling assumptions are violated. In particular, the linear generalization in (4) is imperfect and the items in \(E \) are not guaranteed to attract users independently.

4.5 Million Song Recommendation

Million Song Dataset\(^1\) is a collection of audio features and metadata for a million contemporary pop songs. Instead of storing any audio, the dataset consists of features derived from the audio, user-song profile data, and genres of songs. We extract \(L = 10k \) most popular songs from this dataset, as measured by the number of song-listening events; and \(m = 400k \) most active users, as measured by the number of song-listening events.

Our objective is to maximize the probability that the user is attracted with at least one recommended song and plays it. We build the model of users from their past listening patterns and assume that the user is attracted by the song if the user listened to this song before. This indicates that the

\(^1\)http://labrosa.ee.columbia.edu/millionsong/
user was attracted by the song at some point in time.

4.5.1 Results

The results of our first experiment are reported in Fig. 1. Similarly to Section 4.4, we observe that when the ground set is small, $L = 16$, the regret of all compared methods is similar. As the size of the ground set increases, the gap between CascadeUCB1 and the rest of the methods increases, and the regret of CascadeUCB1 is orders of magnitude larger than that of CascadeLinTS. The regret of CascadeLinTS is similar to that of RankedLinTS for all settings of L.

We report the regret of CascadeLinTS for various numbers of features d, on the whole dataset and its subset of Rock Songs, in Fig. 2a and 2b, respectively. Similarly to Section 4.4, we observe that CascadeLinTS performs well for all settings of d. The lowest regret in both experiments is achieved at $d = 10$.

In the last experiment (Fig. 2c), we observe that the regret of CascadeLinTS increases with the number of recommended items K. As in Section 4.4, we observe that the cumulative reward of our learned policies increases with K. Therefore, the increase in the regret must be due to the fact that the expected reward of the optimal solution, $f(A^*, \bar{w})$, increases faster with K than that of the learned policies. This is due to the mismatch between our model and real-world data.

4.6 Movie Recommendation

MovieLens datasets\(^4\) contain the ratings of users for movies from the MovieLens website. The datasets come in different sizes and we choose MovieLens 1M for our experiments. This dataset contains 1M anonymous ratings of 4k movies by 6k users who joined MovieLens in 2000.

We build the model of users from their historical ratings. The ratings are on a 5-star scale and we assume the user is attracted by a movie if the user rates it with more than 3 stars. Thus, the feedback matrix is defined as $W_{i,j} = 1\{\text{user } i \text{ rates movie } j \text{ with more than } 3 \text{ stars}\}$. Our goal is to maximize the probability of recommending at least one attractive movie.

4.6.1 Results

The results of our first experiment are reported in Fig. 1. Similarly to Section 4.4, we observe that the regret of all compared methods is similar when the ground set is small, $L = 16$. The gap between CascadeUCB1 and the rest of the methods increases when the size of the ground set increases. In particular, the regret of CascadeUCB1 is orders of magnitude larger than that of CascadeLinTS. The regret of CascadeLinTS is always lower than that of RankedLinTS for all settings of L.

We report the regret of CascadeLinTS for various num-

\(^4\)http://grouplens.org/datasets/movielens/
bers of features \(d\), on the whole dataset and its subset of Adventures, in Fig. 2a and 2b, respectively. Similarly to Sections 4.4 and 4.5, we observe that CascadeLinTS performs well for all settings of \(d\). The lowest regret in both experiments is achieved at \(d = 20\).

In the last experiment (Fig. 2c), we observe that the regret of CascadeLinTS increases with the number of recommended items \(K\). As in Sections 4.4 and 4.5, the cumulative reward of our learned policies increases with \(K\). Therefore, the increase in the regret must be due to the fact that the expected reward of the optimal solution, \(f(A^*, \bar{w})\), increases faster with \(K\) than that of the learned policies.

5 RELATED WORK

Our work is closely related to cascading bandits [15, 8], which are learning variants of the cascade model of user behavior [10]. The key difference is that we assume that the attraction weights of items are a linear function of known feature vectors, which are associated with each item; and an unknown parameter vector, which is learned. This leads to very efficient learning algorithms whose regret is sublinear in the number of items \(L\). We compare CascadeLinTS to CascadeLinUCB, one of the proposed algorithms by Kveton et al. [15], in Section 4.

Ranked bandits [20] are a popular approach in learning to rank. The key idea in ranked bandits is to model each position in the recommended list as an independent bandit problem, which is then solved by a base bandit algorithm. The solutions in ranked bandits are \(1 - 1/e\) approximate and their regret grows linearly with the number of recommended items \(K\). On the other hand, ranked bandits do not assume that items attract the user independently. Slikins et al. [22] proposed contextual ranked bandits. We compare CascadeLinTS to contextual ranked bandits with linear generalization in Section 4.

Our learning problem is a partial monitoring problem where we do not observe the attraction weights of all recommended items. Bartok et al. [5] studied general partial monitoring problems. The algorithm of Bartok et al. [5] scales at least linearly with the number of actions, which is \(\binom{L}{K}\) in our setting. Therefore, the algorithm is impractical for large \(L\) and moderate \(K\). Agrawal et al. [2] studied a variant of partial monitoring where the reward is observed. The algorithm of Agrawal et al. [2] cannot be applied to our problem because the algorithm assumes a finite parameter set. Lin et al. [19] and Kveton et al. [17] studied combinatorial partial monitoring. Our feedback model is similar to that of Kveton et al. [17]. Therefore, we believe that our algorithm and analysis can be relatively easily generalized to combinatorial action sets.

Our learning problem is combinatorial as we learn \(K\) most attractive items out of \(L\) candidate items. In this sense, our work is related to stochastic combinatorial bandits, which are frequently studied with a linear reward function and semi-bandit feedback [11, 6, 16, 18, 24, 9]. Our work differs from these approaches in both the reward function and feedback. Our reward function is a non-linear function of unknown parameters. Our feedback model is less than semi-bandit, because the learning agent does not observe the attraction weights of all recommended items.

6 CONCLUSIONS

In this work, we propose linear cascading bandits, a framework for learning to recommend in the cascade model at scale. The key assumption in linear cascading bandits is that the attraction probabilities of items are a linear function of the features of items, which are known; and an unknown parameter vector, which is unknown and we learn it. We design two algorithms for solving our problem, CascadeLinTS and CascadeLinUCB. We bound the regret of CascadeLinUCB and suggest that a similar regret bound can be proved for CascadeLinTS. We comprehensively evaluate CascadeLinTS on a range of recommendation problems and compare it to several baselines. We report orders of magnitude improvements over learning algorithms that do not leverage the structure of our problem, the features of items. We observe empirically that CascadeLinTS performs very well.

We leave open several questions of interest. For instance, we only bound the regret of CascadeLinUCB. Based on the existing work [24], we believe that a similar regret bound can be proved for CascadeLinTS. Moreover, note that our analysis of CascadeLinUCB is under the assumption that items attract the user independently and that the linear generalization is perfect. Both of these assumptions tend to be violated in practice. Our current analysis cannot explain this behavior and we leave it for future work.

The main limitation of the cascade model [10] is that the user clicks on at most one item. This assumption is often violated in practice. Recently, Katariya et al. [13] proposed a generalization of cascading bandits to multiple clicks, by proposing a learning variant of the dependent click model [12]. We strongly believe that our results can be generalized to this setting and leave this for future work.

References

Appendix

A Proof for Theorem 1

A.1 Notations

We start by defining some notations. For each time \(t\), we define a random permutation \((a_1^{*t}, \ldots, a_K^{*t})\) of \(A^*\) based on \(A_t\) as follows: for any \(k = 1, \ldots, K\), if \(a_k^* \in A^*\), then we set \(a_k^{*t} = a_k^*\). The remaining optimal items are positioned arbitrarily. Notice that under this random permutation, we have:

\[\bar{w}(a_k^{*t}) \geq \bar{w}(a_k^*) \quad \text{and} \quad U_t(a_k^*) \geq U_t(a_k^{*t}) \quad \forall k = 1, 2, \ldots, K \]

Moreover, we use \(\mathcal{H}_t\) to denote the “history” (rigorously speaking, \(\sigma\)-algebra) by the end of time \(t\). Then both \(A_t = (a_1^t, \ldots, a_K^t)\) and the permutation \((a_1^{*t}, \ldots, a_K^{*t})\) of \(A^*\) are \(\mathcal{H}_{t-1}\)-adaptable. In other words, they are conditionally deterministic at the beginning of time \(t\). To simplify the notation, in this paper, we use \(\mathbb{E}_t[\cdot]\) to denote \(\mathbb{E}_t[|\mathcal{H}_{t-1}|]\) when appropriate.

When appropriate, we also use \((\cdot, \cdot)\) to denote the inner product of two vectors. Specifically, for two vectors \(u\) and \(v\) with the same dimension, we use \((u, v)\) to denote \(u^T v\).

A.2 Regret Decomposition

We first prove the following technical lemma:

Lemma 1. For any \(B = (b_1, \ldots, b_K) \in \mathbb{R}^K\) and \(C = (c_1, \ldots, c_K) \in \mathbb{R}^K\), we have

\[\Pi_{k=1}^K b_k - \Pi_{k=1}^K c_k = \sum_{k=1}^K \left[\Pi_{i=1}^{k-1} b_i \times [b_k - c_k] \times \left[\Pi_{j=k+1}^K c_j \right] \right].\]

Proof. Notice that

\[
\sum_{k=1}^K \left[\Pi_{i=1}^{k-1} b_i \times [b_k - c_k] \times \left[\Pi_{j=k+1}^K c_j \right] \right] = \sum_{k=1}^K \left\{ \left[\Pi_{i=1}^{k-1} b_i \right] \times \left[\Pi_{j=k+1}^K c_j \right] - \left[\Pi_{i=1}^{k-1} b_i \right] \times \left[\Pi_{j=k}^K c_j \right] \right\} = \Pi_{k=1}^K b_k - \Pi_{k=1}^K c_k.
\]

Thus we have

\[
R(A_t, w_t) = f(A^*, w_t) - f(A_t, w_t)
= \prod_{k=1}^K (1 - w_t(a_k^*)) - \prod_{k=1}^K (1 - w_t(a_k^{*t}))
\overset{(a)}{=} \sum_{k=1}^K \left[\prod_{i=1}^{k-1} (1 - w_t(a_i^*)) \right] \left[w_t(a_k^{*t}) - w_t(a_k^*) \right] \left[\Pi_{j=k+1}^K (1 - w_t(a_j^{*t})) \right]
\overset{(b)}{\leq} \sum_{k=1}^K \left[\prod_{i=1}^{k-1} (1 - w_t(a_i^*)) \right] \left[\bar{w}(a_k^{*t}) - \bar{w}(a_k^*) \right],
\]

where equality (a) is based on Lemma 1 and inequality (b) is based on the fact that \(\prod_{j=k+1}^K (1 - w_t(a_j^{*t})) \leq 1\). Recall that \(A^t\) and the permutation \((a_1^{*t}, \ldots, a_K^{*t})\) of \(A^*\) are deterministic conditioning on \(\mathcal{H}_{t-1}\), and \(a_k^{*t} \neq a_i^*\) for all \(i < k\), thus we have

\[
\mathbb{E}_t[R(A_t, w_t)] \leq \mathbb{E}_t\left[\sum_{k=1}^K \left[\prod_{i=1}^{k-1} (1 - w_t(a_i^*)) \right] \left[\bar{w}(a_k^{*t}) - \bar{w}(a_k^*) \right] \right]
= \sum_{k=1}^K \mathbb{E}_t \left[\prod_{i=1}^{k-1} (1 - w_t(a_i^*)) \right] \mathbb{E}_t \left[\bar{w}(a_k^{*t}) - \bar{w}(a_k^*) \right]
= \sum_{k=1}^K \mathbb{E}_t \left[\prod_{i=1}^{k-1} (1 - w_t(a_i^*)) \right] \left[\bar{w}(a_k^{*t}) - \bar{w}(a_k^*) \right].
\]
For any \(t \leq n \) and any \(e \in E \), we define event
\[
G_{t,k} = \{ \text{item } a_{k}^{e} \text{ is examined in episode } t \},
\]
notice that \(1 \{ G_{t,k} \} = \prod_{i=1}^{k-1} (1 - w_{t}(a_{i}^{e})) \). Thus, we have
\[
E_{t}[R_{k}] \leq \sum_{k=1}^{K} \sum_{t=1}^{n} 1 \{ G_{t,k} \} \left[\bar{w}(a_{k}^{*},t) - \bar{w}(a_{k}^{e}) \right].
\]
Hence, from the tower property, we have
\[
R(n) \leq E \left[\sum_{t=1}^{n} \sum_{k=1}^{K} 1 \{ G_{t,k} \} \left[\bar{w}(a_{k}^{*},t) - \bar{w}(a_{k}^{e}) \right] \right].
\] (6)

We further define event \(E \) as
\[
E = \left\{ \langle x_{e}, \bar{\theta}_{t-1} - \theta^{*} \rangle \leq c \sqrt{x_{e}^{T} M_{t-1}^{-1} x_{e}}, \forall e \in E, \forall t \leq n \right\},
\] (7)
and \(E_{c} \) as the complement of \(E \). Then we have
\[
R(n) \leq P(E)E \left[\sum_{t=1}^{n} \sum_{k=1}^{K} 1 \{ G_{t,k} \} \left[\bar{w}(a_{k}^{*},t) - \bar{w}(a_{k}^{e}) \right] \right] + P(E)E \left[\sum_{t=1}^{n} \sum_{k=1}^{K} 1 \{ G_{t,k} \} \left[\bar{w}(a_{k}^{*},t) - \bar{w}(a_{k}^{e}) \right] \right]
\] \[
\leq E \left[\sum_{t=1}^{n} \sum_{k=1}^{K} 1 \{ G_{t,k} \} \left[\bar{w}(a_{k}^{*},t) - \bar{w}(a_{k}^{e}) \right] \right] + nKP(E),
\] \[
\leq P(E)E \left[\sum_{t=1}^{n} \sum_{k=1}^{K} 1 \{ G_{t,k} \} \left[\bar{w}(a_{k}^{*},t) - \bar{w}(a_{k}^{e}) \right] \right] + nKP(E),
\] (8)
where inequality (a) is based on the law of total probability, and the inequality (b) is based on the naive bounds (1) \(P(E) \leq 1 \) and (2) \(1 \{ G_{t,k} \} \left[\bar{w}(a_{k}^{*},t) - \bar{w}(a_{k}^{e}) \right] \leq 1 \). Notice that from the definition of event \(E \), we have
\[
\bar{w}(e) = \langle x_{e}, \bar{\theta}_{t-1} \rangle + c \sqrt{x_{e}^{T} M_{t-1}^{-1} x_{e}}, \forall e \in E, \forall t \leq n
\]
under event \(E \). Moreover, since \(\bar{w}(e) \leq 1 \) by definition, we have \(\bar{w}(e) \leq U_{e}(e) \) for all \(e \in E \) and all \(t \leq n \) under event \(E \). Hence under event \(E \), we have
\[
\bar{w}(a_{k}^{e}) \leq \bar{w}(a_{k}^{*}) \leq U_{e}(a_{k}^{*}) \leq U_{e}(a_{k}^{e}) \leq \langle x_{e}, \bar{\theta}_{t-1} \rangle + c \sqrt{x_{e}^{T} M_{t-1}^{-1} x_{e}}, \forall t \leq n
\]
Thus we have
\[
\bar{w}(a_{k}^{*}) - \bar{w}(a_{k}^{e}) \leq \langle x_{e}, \bar{\theta}_{t-1} \rangle + c \sqrt{x_{e}^{T} M_{t-1}^{-1} x_{e}}.
\]
where inequality (a) follows from the fact that \(\bar{w}(a_{k}^{*}) \leq \langle x_{e}, \bar{\theta}_{t-1} \rangle + c \sqrt{x_{e}^{T} M_{t-1}^{-1} x_{e}} \) and inequality (b) follows from the fact that \(\langle x_{e}^{*}, \bar{\theta}_{t-1} \rangle \leq c \sqrt{x_{e}^{T} M_{t-1}^{-1} x_{e}} \) under event \(E \). Thus, we have
\[
R(n) \leq 2cE \left[\sum_{t=1}^{n} \sum_{k=1}^{K} 1 \{ G_{t,k} \} \sqrt{x_{e}^{T} M_{t-1}^{-1} x_{e}} \right] + nKP(E).
\]
Define \(K_{t} = \min \{ C_{t}, K \} \), notice that
\[
\sum_{k=1}^{K} 1 \{ G_{t,k} \} \sqrt{x_{e}^{T} M_{t-1}^{-1} x_{e}} = \sum_{k=1}^{K_{t}} \sqrt{x_{e}^{T} M_{t-1}^{-1} x_{e}}.
\]
Thus, we have
\[
R(n) \leq 2cE \left[\sum_{t=1}^{n} \sum_{k=1}^{K_{t}} \sqrt{x_{e}^{T} M_{t-1}^{-1} x_{e}} \right] + nKP(E).
\] (9)
In the next two subsections, we will provide a worst-case bound on \(\sum_{t=1}^{n} \sum_{k=1}^{K_{t}} \sqrt{x_{e}^{T} M_{t-1}^{-1} x_{e}} \) and a bound on \(P(E) \).
A.3 Worst-Case Bound on $\sum_{t=1}^{n} \sum_{k=1}^{K_t} \sqrt{x_{a_k}^T M_{t-1}^{-1} x_{a_k}'}$

Lemma 2. $\sum_{t=1}^{n} \sum_{k=1}^{K_t} \sqrt{x_{a_k}^T M_{t-1}^{-1} x_{a_k}'} \leq K \sqrt{\frac{dn \log(1 + \frac{nK}{d\sigma^2})}{\log(1 + \frac{1}{\sigma^2})}}.$

Proof. To simplify the exposition, we define $z_{t,k} = \sqrt{x_{a_k}^T M_{t-1}^{-1} x_{a_k}'}$ for all (t, k) s.t. $k \leq K_t$. Recall that

$$M_t = M_{t-1} + \frac{1}{\sigma^2} \sum_{k=1}^{K_t} x_{a_k}^T x_{a_k}'$$

Thus, for all (t, k) s.t. $k \leq K_t$, we have that

$$\det[M_t] \geq \det[M_{t-1}] \left(1 + \frac{z_{t,k}^2}{\sigma^2}\right).$$

Since $\det[M_t] \geq \det[M_{t-1}]$ and $K_t \leq K$, we have

$$(\det[M_t])^K \geq (\det[M_{t-1}])^K \prod_{k=1}^{K_t} \left(1 + \frac{z_{t,k}^2}{\sigma^2}\right).$$

So we have

$$(\det[M_n])^K \geq (\det[M_0])^K \prod_{t=1}^{n} \prod_{k=1}^{K_t} \left(1 + \frac{z_{t,k}^2}{\sigma^2}\right),$$

where $M_0 = I$. On the other hand, we have that

$$\text{trace}(M_n) = \text{trace}\left(I + \frac{1}{\sigma^2} \sum_{t=1}^{n} \sum_{k=1}^{K_t} x_{a_k}' x_{a_k}^T\right) = d + \frac{1}{\sigma^2} \sum_{t=1}^{n} \sum_{k=1}^{K_t} \|x_{a_k}'\|^2 \leq d + \frac{nK}{\sigma^2},$$

where the last inequality follows from the fact that $\|x_{a_k}'\|_2 \leq 1$ and $K_t \leq K$. From the trace-determinant inequality, we have $\frac{1}{d} \text{trace}(M_n) \leq [\det(M_n)]^{\frac{1}{2}K}$, thus we have

$$\left[1 + \frac{nK}{d\sigma^2}\right] dK \geq \left[\frac{1}{d} \text{trace}(M_n)\right] dK \geq (\det(M_n))^K \prod_{t=1}^{n} \prod_{k=1}^{K_t} \left(1 + \frac{z_{t,k}^2}{\sigma^2}\right).$$

Taking the logarithm, we have

$$dK \log \left[1 + \frac{nK}{d\sigma^2}\right] \geq \sum_{t=1}^{n} \sum_{k=1}^{K_t} \log \left(1 + \frac{z_{t,k}^2}{\sigma^2}\right).$$

Notice that $z_{t,k}^2 = x_{a_k}^T M_{t-1}^{-1} x_{a_k}' \leq d x_{a_k}' M_0^{-1} x_{a_k}' = \|x_{a_k}'\|^2$, thus we have $z_{t,k}^2 \leq \frac{\log(1 + \frac{z_{t,k}^2}{\sigma^2})}{\log(1 + \frac{1}{\sigma^2})}$. Hence we have

$$\sum_{t=1}^{n} \sum_{k=1}^{K_t} \frac{z_{t,k}^2}{\log(1 + \frac{1}{\sigma^2})} \leq \frac{dK \log \left[1 + \frac{nK}{d\sigma^2}\right]}{\log(1 + \frac{1}{\sigma^2})}.$$

Therefore, we have

$$\sum_{t=1}^{n} \sum_{k=1}^{K_t} \log \left(1 + \frac{z_{t,k}^2}{\sigma^2}\right) \leq \frac{dK \log \left[1 + \frac{nK}{d\sigma^2}\right]}{\log(1 + \frac{1}{\sigma^2})}.$$
Finally, from Cauchy-Schwarz inequality, we have that
\[
\sum_{t=1}^{n} \sum_{k=1}^{K_t} z_{t,k} \leq \sqrt{nK} \left[\sum_{t=1}^{n} \sum_{k=1}^{K_t} z_{t,k}^2 \right] \leq K \sqrt{\frac{dn \log \left(1 + \frac{nK}{d^2} \right)}{\log (1 + \frac{1}{\sigma^2})}}.
\]

A.4 Bound on \(P(\bar{E}) \)

Lemma 3. For any \(\sigma > 0 \), any \(\delta \in (0, 1) \), and any
\[
eq \frac{1}{\sigma} \sqrt{d \log \left(1 + \frac{nK}{d^2} \right) + 2 \log \left(\frac{1}{\delta} \right)} + \| \theta^* \|_2,
\]
we have \(P(\bar{E}) \leq \delta \).

Proof. We start by defining some useful notations. For any \(t = 1, 2, \ldots \), any \(k = 1, 2, \ldots, K_t \), we define
\[
\eta_{t,k} = w_t(a_k^t) - \tilde{w}(a_k^t).
\]
One key observation is that \(\eta_{t,k} \)'s form a Martingale difference sequence (MDS). Moreover, since \(\eta_{t,k} \)'s are bounded in \([-1, 1]\) and hence they are conditionally sub-Gaussian with constant \(R = 1 \). We further define that
\[
V_t = \sigma^2 M_t = \sigma^2 I + \sum_{\tau=1}^{t} \sum_{k=1}^{K_\tau} x_{a_k^\tau}^T x_{a_k^\tau}
\]
\[
S_t = \sum_{\tau=1}^{t} \sum_{k=1}^{K_\tau} x_{a_k^\tau} \eta_{\tau,k} = B_t - \sum_{\tau=1}^{t} \sum_{k=1}^{K_\tau} x_{a_k^\tau} \tilde{w}(a_k^\tau) = B_t - \sum_{\tau=1}^{t} \sum_{k=1}^{K_\tau} x_{a_k^\tau}^T \theta^*.
\]
As we will see later, we define \(V_t \) and \(S_t \) to use the “self normalized bound” developed in [1] (see Algorithm 1 of [1]). Notice that
\[
M_t \dot{\theta}_t = \frac{1}{\sigma^2} B_t = \frac{1}{\sigma^2} S_t + \frac{1}{\sigma^2} \left[\sum_{\tau=1}^{t} \sum_{k=1}^{K_\tau} x_{a_k^\tau}^T x_{a_k^\tau} \right] \theta^* = \frac{1}{\sigma^2} S_t + [M_t - I] \theta^*,
\]
where the last equality is based on the definition of \(M_t \). Hence we have
\[
\dot{\theta}_t - \theta^* = M_t^{-1} \left[\frac{1}{\sigma^2} S_t - \theta^* \right].
\]
Thus, for any \(e \in E \), we have
\[
\left| \langle e, \dot{\theta}_t - \theta^* \rangle \right| = \left| e^T M_t^{-1} \left[\frac{1}{\sigma^2} S_t - \theta^* \right] \right| \leq \| e \|_M M_t^{-1} \| \frac{1}{\sigma^2} S_t - \theta^* \|_{M_t^{-1}} \leq \| e \|_{M_t^{-1}} \left[\| \frac{1}{\sigma^2} S_t \|_{M_t^{-1}} + \| \theta^* \|_{M_t^{-1}} \right],
\]
where the first inequality follows from the Cauchy-Schwarz inequality and the second inequality follows from the triangle inequality. Notice that \(\| \theta^* \|_{M_t^{-1}} \leq \| \theta^* \|_{M_0^{-1}} = \| \theta^* \|_2 \), and \(\| \frac{1}{\sigma^2} S_t \|_{M_t^{-1}} = \frac{1}{\sigma} \| S_t \|_{V_t^{-1}} \) (since \(M_t^{-1} = \sigma^2 V_t^{-1} \)), so we have
\[
\left| \langle e, \dot{\theta}_t - \theta^* \rangle \right| \leq \| e \|_{M_t^{-1}} \left[\frac{1}{\sigma} \| S_t \|_{V_t^{-1}} + \| \theta^* \|_2 \right].
\]
Notice that the above inequality always holds. We now provide a high-probability bound on \(\| S_t \|_{V_t^{-1}} \) based on “self normalized bound” proposed in [1]. From Theorem 1 of [1], we know that for any \(\delta \in (0, 1) \), with probability at least \(1 - \delta \), we have
\[
\| S_t \|_{V_t^{-1}} \leq \sqrt{2 \log \left(\frac{\det(V_t)^{1/2} \det(V_0)^{-1/2}}{\delta} \right)} \quad \forall t = 0, 1, \ldots
\]

\(\dagger \) Notice that the notion of “time” is indexed by the pair \((t, k)\), and follows the lexicographical order.
Notice that $\det(V_0) = \det(\sigma^2 I) = \sigma^{2d}$. Moreover, from the trace-determinant inequality, we have

$$[\det(V_t)]^{1/d} \leq \frac{\text{trace}(V_t)}{d} = \sigma^2 + \frac{1}{d} \sum_{\tau=1}^{K_t} \sum_{k=1}^{K_t} \|x_{a_{\tau}^k}\|_2^2 \leq \sigma^2 + \frac{tK}{d} \leq \sigma^2 + \frac{nK}{d},$$

where the second inequality follows from the assumption that $\|x_{a_{\tau}^k}\|_2 \leq 1$ and $K_\tau \leq K$, and the last inequality follows from $t \leq n$. Thus, with probability at least $1 - \delta$, we have

$$\|S_t\|_{V_t^{-1}} \leq \sqrt{d \log \left(1 + \frac{nK}{d\sigma^2}\right) + 2 \log \left(\frac{1}{\delta}\right)} \quad \forall t = 0, 1, \ldots, n - 1.$$

That is, with probability at least $1 - \delta$, we have

$$|\langle x_c, \bar{\theta}_t - \theta^* \rangle| \leq \|x_c\|_{M_t^{-1}} \left[\frac{1}{\sigma} \sqrt{d \log \left(1 + \frac{nK}{d\sigma^2}\right) + 2 \log \left(\frac{1}{\delta}\right) + \|\theta^*\|_2} \right]$$

for all $t = 0, 1, \ldots, n - 1$ and $\forall e \in E$. Recall that by definition of event E, the above inequality implies that, if

$$c \geq \frac{1}{\sigma} \sqrt{d \log \left(1 + \frac{nK}{d\sigma^2}\right) + 2 \log \left(\frac{1}{\delta}\right) + \|\theta^*\|_2},$$

then $P(E) \geq 1 - \delta$. That is, $P(\bar{E}) \leq \delta$. ■

A.5 Conclude the Proof

Putting it together, for any $\sigma > 0$, any $\delta \in (0, 1)$, and any

$$c \geq \frac{1}{\sigma} \sqrt{d \log \left(1 + \frac{nK}{d\sigma^2}\right) + 2 \log \left(\frac{1}{\delta}\right) + \|\theta^*\|_2},$$

we have that

$$R(n) \leq 2cE \left[\sum_{t=1}^{n} \sum_{k=1}^{K_t} \sqrt{x_{a_{\tau}^k}^T M_t^{-1} x_{a_{\tau}^k}} \right] + nKP(\bar{E})$$

$$\leq 2cK \sqrt{dn \log \left(1 + \frac{nK}{d\sigma^2}\right) \log \left(1 + \frac{1}{\sigma^2}\right) + nK\delta}.$$ \hspace{1cm} (12)

Choose $\delta = \frac{1}{nK}$, we have the following result: for any $\sigma > 0$ and any

$$c \geq \frac{1}{\sigma} \sqrt{d \log \left(1 + \frac{nK}{d\sigma^2}\right) + 2 \log (nK) + \|\theta^*\|_2},$$

we have

$$R(n) \leq 2cK \sqrt{dn \log \left(1 + \frac{nK}{d\sigma^2}\right) \log \left(1 + \frac{1}{\sigma^2}\right) + 1}.$$