Learning to Act Greedily: Polymatroid Semi-Bandits

Branislav Kveton
Technicolor Labs
175 S San Antonio Road, Suite 200, Los Altos, CA 94022, USA
BRANISLAV.KVETON@TECHNICOLOR.COM

Zheng Wen
Yahoo Labs
701 1st Ave, Sunnyvale, CA 94089, United States
ZHENGWEN@YAHOO-INC.COM

Azin Ashkan
Technicolor Labs
175 S San Antonio Road, Suite 200, Los Altos, CA 94022, USA
AZIN.ASHKAN@TECHNICOLOR.COM

Michal Valko
INRIA Lille - Nord Europe, SequeL team
40 avenue Halley 59650, Villeneuve d’Ascq, France
MICHAL.VALKO@INRIA.FR

Editor:

Abstract
Many important optimization problems, such as the minimum spanning tree and minimum-cost flow, can be solved optimally by a greedy method. In this work, we study a learning variant of these problems, where the model of the problem is unknown and has to be learned by interacting repeatedly with the environment in the bandit setting. We formalize our learning problem quite generally, as learning how to maximize an unknown modular function on a known polymatroid. We propose a computationally efficient algorithm for solving our problem and bound its expected cumulative regret. Our gap-dependent upper bound is tight up to a constant and our gap-free upper bound is tight up to polylogarithmic factors. Finally, we evaluate our method on three problems and demonstrate that it is practical.

Keywords: bandits, combinatorial optimization, matroids, polymatroids, submodularity

1. Introduction
Many important combinatorial optimization problems, such as the minimum-cost flow (Megiddo, 1974) and minimum spanning tree (Papadimitriou and Steiglitz, 1998), can be solved optimally by a greedy algorithm. These problems can be solved efficiently because they can be viewed as optimization on matroids (Whitney, 1935) or polymatroids (Edmonds, 1970). More specifically, they can be formulated as finding the maximum of a modular function on the polytope of a submodular function. In this work, we study a learning variant of this problem where the modular function is unknown.

Our learning problem is sequential and divided into episodes. In each episode, the learning agent chooses a feasible solution to our problem, the basis of a polymatroid; observes noisy weights of all items with non-zero contributions in the basis; and receives the dot product between the basis and the weights as a payoff. The goal of the learning agent is to maximize its expected cumulative return over time, or equivalently to minimize its expected cumulative regret. Many practical problems can be formulated in our setting, such as learning a routing network (Oliveira and Pardalos, 2005) where the delays on the links of the network are stochastic and initially unknown. In this problem, the bases are spanning trees, the observed weights are the delays on the links of the spanning tree, and the cost is the sum of the observed delays.

This paper makes three contributions. First, we bring together the concepts of bandits (Lai and Robbins, 1985; Auer et al., 2002a) and polymatroids (Edmonds, 1970), and propose polymatroid bandits, a new class of stochastic learning problems. A multi-armed bandit (Lai and Robbins, 1985) is a framework for solving
online learning problems that require exploration. The framework has been successfully applied to a variety of problems, including those in combinatorial optimization (Gai et al., 2012; Cesa-Bianchi and Lugosi, 2012; Audibert et al., 2014). In this paper, we extend bandits to the combinatorial optimization problems that can be solved greedily.

Second, we propose a simple algorithm for solving our problem, which explores based on the optimism in the face of uncertainty. We refer to our algorithm as Optimistic Polymatroid Maximization (OPM). OPM has two key properties. First, it is computationally efficient because the basis in each episode is chosen greedily. Second, OPM is also sample efficient. In particular, we derive a gap-dependent upper bound on the expected cumulative regret of OPM and show that it is tight up to a constant, and we also derive a gap-free upper bound and show that it is tight up to polylogarithmic factors. Our upper bounds exploit the structural properties of polymatroids and improve over general-purpose bounds for stochastic combinatorial semi-bandits.

Finally, we evaluate OPM on three problems. The first problem is a synthetic flow network and we use it to demonstrate that our gap-dependent upper bound is quite practical, an order of magnitude larger than the in our framework. This demonstrates that OPM is practical and can solve a wide range of problems.

We adopt the following notation. We write $A + e$ instead of $A \cup \{e\}$, and $A + B$ instead of $A \cup B$. We also write $A - e$ instead of $A \setminus \{e\}$, and $A - B$ instead of $A \setminus B$.

2. Polymatroids

In this section, we first introduce polymatroids and then illustrate them on practical problems. A polymatroid (Edmonds, 1970) is a polytope associated with a submodular function. More specifically, a polymatroid is a pair $M = (E, f)$, where $E = \{1, \ldots, L\}$ is a ground set of L items and $f : 2^E \to \mathbb{R}^+$ is a function from the power set of E to non-negative real numbers. The function f is monotonic, $\forall X \subseteq Y \subseteq E : f(X) \leq f(Y)$; submodular, $\forall X, Y \subseteq E : f(X) + f(Y) \geq f(X \cup Y) + f(X \cap Y)$; and $f(\emptyset) = 0$. Since f is monotonic, $f(E)$ is one of its maxima. We refer to $f(E)$ as the rank of a polymatroid and denote it by K. Without loss of generality, we assume that $f(e) \leq 1$ for all items $e \in E$. Because f is submodular, we indirectly assume that $f(X + e) - f(X) \leq 1$ for all $X \subseteq E$.

The independence polyhedron P_M associated with polymatroid M is a subset of \mathbb{R}^L defined as:

$$P_M = \{ x : x \in \mathbb{R}^L, \ x \geq 0, \ \forall X \subseteq E : \sum_{e \in X} x(e) \leq f(X) \} ,$$

where $x(e)$ is the e-th entry of vector x. The vector x is independent if $x \in P_M$. The base polyhedron B_M is a subset of P_M defined as:

$$B_M = \{ x : x \in P_M, \sum_{e \in E} x(e) = K \} .$$

The vector x is a basis if $x \in B_M$. In other words, x is independent and its entries sum up to K.

2.1 Optimization on Polymatroids

A weighted polymatroid is a polymatroid associated with a vector of weights $w \in (\mathbb{R}^+)^L$. The e-th entry of w, $w(e)$, is the weight of item e. A classical problem in polyhedral optimization is to find a maximum-weight basis of a polymatroid:

$$x^* = \arg \max_{x \in B_M} \langle w, x \rangle = \arg \max_{x \in P_M} \langle w, x \rangle .$$

This basis can be computed greedily (Algorithm 1). The greedy algorithm works as follows. First, the items E are sorted in decreasing order of their weights, $w(e_1) \geq \ldots \geq w(e_L)$. We assume that the ties are broken by an arbitrary but fixed rule. Second, x^* is computed as $x^*(e_i) = f(\{e_1, \ldots, e_i\}) - f(\{e_1, \ldots, e_{i-1}\})$ for
Algorithm 1 Greedy: Edmond’s algorithm for computing the maximum-weight basis of a polymatroid.

Input: Polymatroid $M = (E, f)$, weights w

Let e_1, \ldots, e_L be an ordering of items such that:

$w(e_1) \geq \ldots \geq w(e_L)$

$x \leftarrow$ All-zeros vector of length L

for all $i = 1, \ldots, L$ do

$x(e_i) \leftarrow f(\{e_1, \ldots, e_i\}) - f(\{e_1, \ldots, e_{i-1}\})$

end for

Output: Maximum-weight basis x

all i. Note that the minimum-weight basis of a polymatroid with weights w is the maximum-weight basis of the same polymatroid with weights $\max_{e \in E} w(e) - w$:

$$\arg \min_{x \in \mathcal{B}_M} \langle w, x \rangle = \arg \max_{x \in \mathcal{B}_M} \langle \max_{e \in E} w(e) - w, x \rangle.$$

So the minimization problem is mathematically equivalent to the maximization problem (3), and all results in this paper straightforwardly generalize to the minimization.

Many existing problems can be viewed as optimization on a polymatroid (3). For instance, polymatroids generalize matroids (Whitney, 1935), a notion of independence in combinatorial optimization that is closely related to computational efficiency. In particular, let $M = (E, I)$ be a matroid, where $E = \{1, \ldots, L\}$ is its ground set, $I \subseteq 2^E$ are its independent sets, and:

$$f(X) = \max_{Y : X \subseteq Y, Y \in I} |Y|$$

is its rank function. Let $w \in (\mathbb{R}^+)^L$ be a vector of non-negative weights. Then the maximum-weight basis of a matroid:

$$A^* = \arg \max_{A \in I} \sum_{e \in A} w(e)$$

can be also derived as $A^* = \{e : x^*(e) = 1\}$, where x^* is the maximum-weight basis of the corresponding polymatroid. The basis is $x^* \in \{0, 1\}^L$ because the rank function is a monotonic submodular function with zero-one increments (Fujishige, 2005).

Our optimization problem can be written as a linear program (LP) (Bertsimas and Tsitsiklis, 1997):

$$\max \sum_{e \in E} w(e)x(e) \quad \text{subject to:} \quad \sum_{e \in X} x(e) \leq f(X) \quad \forall X \subseteq E,$$

where $x \in (\mathbb{R}^+)^L$ is a vector of L optimized variables. This LP has exponentially many constraints, one for each subset $X \subseteq E$. Therefore, it cannot be solved directly. Nevertheless, Greedy can solve the problem in $O(L \log L)$ time. Therefore, our problem is a very efficient form of linear programming.

Many combinatorial optimization concepts, such as flows and entropy (Fujishige, 2005), are submodular. Therefore, optimization on these concepts involves polymatroids. A well-known problem in this class is the minimum-cost flow (Megiddo, 1974). This problem can be formulated as follows. The ground set E are the source nodes of a flow network, $f(X)$ is the maximum flow through source nodes $X \subseteq E$, and $w(e)$ is the cost of a unit flow through source node e. The minimum-weight basis of this polymatroid is the minimum flow with the minimum cost (Fujishige, 2005), which we refer to as the minimum-cost flow.

The problem of recommending diverse items can be also cast as optimization on a polymatroid (Ashkan et al., 2014a,b). Let E be a set of recommendable items, $f(X)$ be the number of topics covered by items X, without
and w be a weight vector such that $w(e)$ is the popularity of item e. Then $x^* = \text{Greedy}(M, w)$ is a vector such that $x^*(e) > 0$ if and only if item e is the most popular item in at least one topic covered by item e. We illustrate this concept on a simple example. Let the ground set E be a set of 3 movies:

<table>
<thead>
<tr>
<th>e</th>
<th>Movie title</th>
<th>Popularity $w(e)$</th>
<th>Movie genres</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inception</td>
<td>0.8</td>
<td>Action</td>
</tr>
<tr>
<td>2</td>
<td>Grown Ups 2</td>
<td>0.5</td>
<td>Comedy</td>
</tr>
<tr>
<td>3</td>
<td>Kindergarten Cop</td>
<td>0.6</td>
<td>Action, Comedy</td>
</tr>
</tbody>
</table>

Let $f(X)$ be the number of movie genres covered by movies X. Then f is submodular and defined as:

$$
\begin{align*}
 f(\emptyset) &= 0, \\
 f(\{1\}) &= 1, \\
 f(\{2\}) &= 1, \\
 f(\{1, 2\}) &= 2, \\
 f(\{2, 3\}) &= 2, \\
 f(\{1, 3\}) &= 2, \\
 f(\{1, 2, 3\}) &= 2.
\end{align*}
$$

The maximum-weight basis of polymatroid $M = (E, f)$ is $x^* = (1, 0, 1)$, and $\{e : x^*(e) > 0\} = \{1, 3\}$ is the minimal set of movies that cover each movie genre by the most popular movie in that genre.

2.2 Combinatorial Optimization on Polymatroids

In this paper, we restrict our attention to the feasible solutions:

$$
\Theta = \{ x : (\exists w \in (\mathbb{R}^+)^L : x = \text{Greedy}(M, w)) \}
$$

that can be computed greedily for some weight vector w and define our objective as finding:

$$
x^* = \arg \max_{x \in \Theta} \langle w, x \rangle.
$$

The set Θ are the vertices of B_M and we prove this formally in Lemma 8 in Appendix.

Our choice is motivated by three reasons. First, we study the problem of learning to act greedily. So we are only interested in the bases that can be computed greedily. Second, many optimization problems of our interest (Section 2.1) are combinatorial in nature and only the bases in Θ are suitable feasible solutions. For instance, in a graphic matroid, Θ is a set of spanning trees. In a linear matroid, Θ is a set of maximal sets of linearly independent vectors. The bases in $B_M - \Theta$ do not have this interpretation. Another example is our recommendations problem in Section 2.1. In this problem, for any $x = \text{Greedy}(M, w)$, $\{e : x(e) > 0\}$ is a minimal set of items that cover each topic by the most popular item according to w. The bases in $B_M - \Theta$ cannot be interpreted in this way. Finally, we note that our choice does not have any impact on the notion of optimality. In particular, let x be optimal for some w. Then $x^g = \text{Greedy}(M, w)$ is also optimal and since $x^g \in \Theta$, it follows that:

$$
\max_{x \in B_M} \langle w, x \rangle = \max_{x \in \Theta} \langle w, x \rangle.
$$

3. Polymatroid Bandits

The maximum-weight basis of a polymatroid cannot be computed when the weights w are unknown. This may happen in practice. For instance, suppose that we want to recommend a diverse set of popular movies (Section 2.1) but the popularity of these movies is initially unknown, perhaps because the movies are newly released. In this work, we study a learning variant of maximizing a modular function on a polymatroid that can solve this type of problems.

3.1 Model

We formalize our learning problem as a polymatroid bandit. A polymatroid bandit is a pair (M, P), where M is a polymatroid and P is a probability distribution over the weights $w \in \mathbb{R}^L$ of items E in M. The e-th
entry of \(w \), \(w(e) \), is the weight of item \(e \). We assume that the weights \(w \) are drawn i.i.d. from \(P \) and that \(P \) is unknown. Without loss of generality, we assume that \(P \) is a distribution over the unit cube \([0, 1]^L\). Other than that, we do not assume anything about \(P \). We denote the expected weights of the items by \(\bar{w} = \mathbb{E}[w] \).

By our assumptions on \(P \), \(\bar{w}(e) \geq 0 \) for all items \(e \).

Each item \(e \) is associated with an arm and each feasible solution \(x \in \Theta \) is associated with a set of arms \(A = \{ e : x(e) > 0 \} \). The arms \(A \) are the items with non-zero contributions in \(x \). After the arms are pulled, the learning agent receives a payoff of \(\langle w, x \rangle \) and observes \(\{(e, w(e)) : x(e) > 0\} \), the weights of all items with non-zero contributions in \(x \). This feedback model is known as semi-bandit (Audibert et al., 2014). The solution to our problem is a maximum-weight basis in expectation:

\[
x^* = \arg \max_{x \in \Theta} \mathbb{E}_{\bar{w}}[\langle w, x \rangle] = \arg \max_{x \in \Theta} \mathbb{E}[\bar{w}, x].
\] (12)

This problem is equivalent to problem (10) and therefore can be solved greedily, \(x^* = \text{Greedy}(M, \bar{w}) \).

We choose our observation model for several reasons. First, the model is a natural generalization of that in matroid bandits (Kveton et al., 2014a). In matroid bandits, the bases are of the form \(x \in \Theta \) and the learning agent observes the weights of all chosen items \(e \), \(x(e) = 1 \). In this case, \(x(e) = 1 \) is equivalent to \(x(e) > 0 \). Second, our observation model is suitable for our motivating examples (Section 2.1). Specifically, in the minimum-cost flow problem, we assume that the learning agent observes the costs of all source nodes that contribute to the maximum flow. In the movie recommendation problem, the agent observes individual movies chosen by the user, from a set of recommended movies. Finally, our observation model allows us to derive similar regret bounds to those in matroid bandits (Kveton et al., 2014a).

Our learning problem is episodic. Let \((w_t)_{t=1}^T \) be an i.i.d. sequence of weights drawn from distribution \(P \). In episode \(t \), the learning agent chooses basis \(x_t \) based on its prior actions \(x_1, \ldots, x_{t-1} \) and observations of \(w_1, \ldots, w_{t-1} \); gains \((w_t, x_t) \); and observes \(\{(e, w_t(e)) : x_t(e) > 0\} \), the weights of all items with non-zero contributions in \(x_t \). The agent interacts with the environment in \(n \) episodes. The goal of the agent is to maximize its expected cumulative return, or equivalently to minimize its expected cumulative regret:

\[
R(n) = \mathbb{E}\left[\sum_{t=1}^n R(x_t, w_t)\right],
\] (13)

where \(R(x, w) = \langle w, x^* \rangle - \langle w, x \rangle \) is the regret associated with basis \(x \) and weights \(w \).

3.2 Algorithm

Our learning algorithm is designed based on the optimism in the face of uncertainty principle (Auer et al., 2002a). In particular, it is a greedy method for finding a maximum-weight basis of a polymatroid where the expected weight \(\bar{w}(e) \) of each item is substituted with its optimistic estimate \(U_t(e) \). We refer to our method as Optimistic Polymatroid Maximization (OPM).

The pseudocode of OPM is given in Algorithm 2. In each episode \(t \), the algorithm works as follows. First, we compute an upper confidence bound (UCB) on the expected weight of each item \(e \):

\[
U_t(e) = \bar{w}_{t_{e-1}}(e) + c_{t-1, T_{t-1}(e)},
\] (14)

where \(\bar{w}_{T_{t-1}(e)}(e) \) is our estimate of the expected weight \(\bar{w}(e) \) in episode \(t \), \(c_{t-1, T_{t-1}(e)} \) is the radius of the confidence interval around this estimate, and \(T_{t-1}(e) \) denotes the number of times that item \(e \) is selected in the first \(t-1 \) episodes, \(x_i(e) > 0 \) for \(i < t \). Second, we compute the maximum-weight basis with respect to \(U_t \) using \text{Greedy}. Finally, we select the basis, observe the weights of all items \(e \) where \(x_t(e) > 0 \), and then update our model \(\bar{w} \) of the environment. The radius:

\[
c_{t,s} = \sqrt{\frac{2 \log t}{s}}
\] (15)
is designed such that each UCB is a high-probability upper bound on the corresponding weight \(\hat{w}_s(e) \). The UCBs encourage exploration of items that have not been observed sufficiently often. As the number of past episodes increases, we get better estimates of the weights \(\bar{w} \), all confidence intervals shrink, and 0PM starts exploiting most rewarding items. The \(\log(t) \) term increases with time and enforces continuous exploration.

For simplicity of exposition, we assume that 0PM is initialized by observing each item once. In practice, this initialization step can be implemented efficiently in the first \(L \) episodes. In particular, in episode \(t \leq L \), 0PM chooses first item \(t \) and then all other items, in an arbitrary order. The corresponding regret is bounded by \(KL \) because \((\bar{w}, x) \in [0, K] \) for any \(\bar{w} \) (Section 3.1) and basis \(x \) (Section 2).

0PM is a greedy method and therefore is extremely computationally efficient. In particular, suppose that the function \(f \) is an oracle that can be queried in \(O(1) \) time. Then the time complexity of 0PM in episode \(t \) is \(O(L \log L) \), comparable to that of sorting \(L \) numbers. The design of 0PM is not very surprising and it draws on prior work (Kveton et al., 2014a; Gai et al., 2012).

Our major contribution is that we derive a tight upper bound on the regret of 0PM. Our analysis is novel and is a significant improvement over Kveton et al. (2014a), who analyze the regret of 0PM in the context of matroids. Roughly speaking, the analysis of Kveton et al. (2014a) leverages the augmentation property of a matroid. Our analysis is based on the submodularity of a polymatroid.

4. Analysis

This section is organized as follows. First, we propose a novel decomposition of the regret of 0PM in a single episode (Section 4.1). Loosely speaking, we decompose the regret as a sum of its parts, the fractional gains of individual items in the optimal and suboptimal bases. This part of the proof relies heavily on the structure of a polymatroid and is a major contribution. Second, we apply the regret decomposition to bound the regret of 0PM (Section 4.2). Third, we compare our regret bounds to existing upper bounds (Section 4.3) and prove matching lower bounds (Section 4.4). Finally, we summarize our results (Section 4.5).

4.1 Regret Decomposition

The key step in our analysis is that we bound the expected regret in episode \(t \) for any basis \(x_t \), \(R(x_t, \bar{w}) \). In rest of this section, we fix the basis \(x_t \) and drop indexing by time \(t \) to simplify our notation.
Without loss of generality, we assume that the items in the ground set E are ordered such that $\bar{w}(1) \geq \ldots \geq \bar{w}(L)$. So the optimal basis x^* is defined as:

$$x^*(i) = f(A^*_i) - f(A^*_{i-1}) \quad i = 1, \ldots, L;$$

(16)

where $A^*_i = \{1, \ldots, i\}$ are the first i items in E. Let U_t be the vector of UCBs in episode t and a_1, \ldots, a_L be the ordering of items such that $U_t(a_1) \geq \ldots \geq U_t(a_L)$. Then the basis x in episode t is defined as:

$$x(a_k) = f(A_k) - f(A_{k-1}) \quad k = 1, \ldots, L;$$

(17)

where $A_k = \{a_1, \ldots, a_k\}$. The hardness of discriminating items e and e^* is measured by a gap between the expected weights of the items:

$$\Delta_{e,e^*} = \bar{w}(e^*) - \bar{w}(e).$$

(18)

For each item e, we define $\rho(e)$, the largest index such that $\bar{w}(\rho(e)) > \bar{w}(e)$ and $x^*(\rho(e)) > 0$, the expected weight of item $\rho(e)$ is larger than that of item e and the item contributes to x^*. For simplicity of exposition, we assume that item 1 contributes to the optimal basis x^*, $x^*(1) > 0$. This guarantees that $\rho(e)$ is properly defined for all items but item 1. We assume that $\rho(1) = 0$.

Our regret decomposition is based on rewriting the difference in the expected returns of bases x^* and x as the sum of the differences in the returns of intermediate solutions, which are obtained by interleaving the bases. We refer to these solutions as augmentations. A k-augmentation is a vector $y_k \in [0, 1]^L$ such that:

$$y_k(i) = \begin{cases} f(A_i) - f(A_{i-1}) & i \in A_k \text{ and } a_j = i \\ f(A_k + A^*_k) - f(A_k + A^*_{k-1}) & i \notin A_k \end{cases} \quad i = 1, \ldots, L.$$

(19)

It can be also viewed as a basis generated by Greedy, which first selects k suboptimal items a_1, \ldots, a_k and then the remaining $L - K$ items, ordered from 1 to L. Now we prove our first lemma.

Lemma 1 For any k, the difference of two consecutive augmentations y_{k-1} and y_k satisfies:

$$y_{k-1}(i) - y_k(i) = \begin{cases} 0 & i \in A_{k-1} \\ \leq 0 & i = a_k \\ \geq 0 & i \notin A_k \end{cases} \quad i = 1, \ldots, L.$$

Proof First, let $i = a_j \in A_{k-1}$. Then by definition (19):

$$y_{k-1}(i) - y_k(i) = f(A_j) - f(A_{j-1}) - (f(A_j) - f(A_{j-1})) = 0.$$

(20)

Second, let $i = a_k$. Then:

$$y_{k-1}(i) - y_k(i) = f(A_{k-1} + A^*_k) - f(A_{k-1} + A^*_{k-1}) - (f(A_k) - f(A_{k-1}))$$

$$= f(A_k + A^*_k) - f(A_{k-1} + A^*_{k-1}) - (f(A_k) - f(A_{k-1}))$$

$$\leq 0.$$

(21)

The first equality is due to definition (19). The second equality follows from the assumption that $i = a_k$. The inequality is due to the submodularity of f. Finally, let $i \notin A_k$. Then:

$$y_{k-1}(i) - y_k(i) = f(A_k + A^*_k) - f(A_{k-1} + A^*_{k-1}) - (f(A_k + A^*_k) - f(A_k + A^*_{k-1}))$$

$$\geq 0.$$

(22)

The equality is due to definition (19). The inequality is due to the submodularity of f.

\[\blacksquare \]
Lemma 1 says that $y_{k-1}(a_k) - y_k(a_k)$ is the only non-negative entry in $y_{k-1} - y_k$. Since y_{k-1} and y_k are bases, $\sum_{e=1}^{L} y_{k-1}(i) = \sum_{e=1}^{L} y_k(i) = K$, it follows that $y_{k-1}(a_k) - y_k(a_k) = -\sum_{i \notin A_k} [y_{k-1}(i) - y_k(i)]$. The quantity $y_{k-1}(i) - y_k(i)$ can be viewed as a fraction of item i in y_{k-1} exchanged for item a_k in y_k. In the rest of our analysis, we represented these fractions as a vector:

$$\delta(a_k, i) = \max \{ y_{k-1}(i) - y_k(i), 0 \}.$$ \hfill (23)

Lemma 2 For any k, the difference in the expected returns of augmentations y_{k-1} and y_k is bounded as:

$$\langle \bar{w}, y_{k-1} - y_k \rangle \leq \sum_{e^* = 1}^{\rho(a_k)} \Delta_{a_k, e^*} \delta(a_k, e^*).$$

Proof The claim is proved as:

$$\langle \bar{w}, y_{k-1} - y_k \rangle = \sum_{e^* \notin A_k} \bar{w}(e^*) \delta(a_k, e^*) - \bar{w}(a_k) \sum_{e^* \notin A_k} \delta(a_k, e^*)$$

$$= \sum_{e^* \notin A_k} (\bar{w}(e^*) - \bar{w}(a_k)) \delta(a_k, e^*)$$

$$\leq \sum_{e^* = 1}^{\rho(a_k)} \Delta_{a_k, e^*} \delta(a_k, e^*)$$

$$= \sum_{e^* = 1}^{\rho(a_k)} \Delta_{a_k, e^*} \delta(a_k, e^*).$$ \hfill (24)

The first two steps follow from Lemma 1 and the subsequent discussion. Then we neglect the negative gaps. Finally, because f is monotonic and submodular, $\delta(a_k, e^*) = 0$ for any $e^* \notin A_k$ such that $x^*(e^*) = 0$. As a result, we can restrict the scope of the summation over e^* to between 1 and $\rho(a_k)$.

Now we are ready to prove our main lemma.

Theorem 3 The expected regret of choosing any basis x in episode t is bounded as:

$$R(x, \bar{w}) \leq \sum_{e=1}^{L} \sum_{e^* = 1}^{\rho(e)} \Delta_{e, e^*} \delta(e, e^*),$$

where $\delta(e, e^*)$ is the fraction of item e^* exchanged for item e in episode t, and is defined in (23). Moreover, when $\delta(e, e^*) > 0$, \mathcal{OPM} observes the weight of item e and $U(t, e) \geq U(t, e^*)$. Finally:

$$\forall t : \sum_{e=1}^{L} \sum_{e^* = 1}^{\rho(e)} \delta(e, e^*) \leq K, \quad \forall t, e \in E : \sum_{e^* = 1}^{\rho(e)} \delta(e, e^*) \leq 1.$$

Proof The first claim is proved as follows:

$$R(x, \bar{w}) = \langle \bar{w}, x^* - x \rangle = \sum_{k=1}^{L} (\bar{w}, y_{k-1} - y_k) \leq \sum_{k=1}^{L} \sum_{e^* = 1}^{\rho(a_k)} \Delta_{a_k, e^*} \delta(a_k, e^*).$$ \hfill (25)

First, we rewrite the regret $\langle \bar{w}, x^* - x \rangle$ as the sum of the differences in $(L + 1) k$-augmentations, from y_0 to y_L. Note that $y_0 = x^*$ and $y_L = x$. Second, we bound each term in the sum using Lemma 2. Finally, we replace the sum over all indices k by the sum over all items e.

8
The second claim is proved as follows. Let \(\delta(e, e^*) > 0 \). Then OPM is guaranteed to observe the weight of item \(e \) because \(x(e) \geq \delta(e, e^*) > 0 \). Furthermore, let \(U_t(e) < U_t(e^*) \). Then OPM chooses item \(e^* \) before item \(e \), and \(\delta(e, e^*) = 0 \) by Lemma 1. This is a contradiction because \(\delta(e, e^*) > 0 \) by our assumption. As a result, it must be true that \(\delta(e, e^*) > 0 \) implies \(U_t(e) \geq U_t(e^*) \).

The last two inequalities follow from two observations. First, \(\sum_{e^*=e^{\ast}}^\rho(e) \delta(e, e^*) \leq x(e) \) for any basis \(x \) and item \(e \), the sum of the contributions from items \(e^* \) to \(e \) cannot be larger than the total contribution of item \(e \) in \(x \). Second, by the definitions in Section 2, \(x(e) \leq 1 \) and \(\sum_{e \in E} x(e) = K \) for any basis \(x \) and item \(e \). ■

Note that \(\delta(e, e^*) \) is a random variable that depends on the basis \(x_t \) in episode \(t \). To stress this dependence, we denote it by \(\delta_t(e, e^*) \) in the rest of our analysis.

4.2 Upper Bounds

Our first result is a gap-dependent bound. We prove a gap-free bound in sequel.

Theorem 4 (gap-dependent bound) The expected cumulative regret of OPM is bounded as:

\[
R(n) \leq \sum_{e=1}^L \frac{16}{\Delta_e,\rho(e)} \log n + \sum_{e=1}^L \sum_{e^*=1}^{\rho(e)} \Delta_e,e^* \frac{4}{3} n^2.
\]

Proof First, we bound the expected regret in episode \(t \) using Theorem 3:

\[
R(n) = \sum_{t=1}^n \mathbb{E}_{w_1,\ldots,w_{t-1}} \mathbb{E}_{w_t}[R(X_t, W_t)]
\]

\[
\leq \sum_{t=1}^n \mathbb{E}_{w_1,\ldots,w_{t-1}} \left[\sum_{e=1}^L \sum_{e^*=1}^{\rho(e)} \Delta_e,e^* \delta_t(e, e^*) \right]
\]

\[
= \sum_{e=1}^L \sum_{e^*=1}^{\rho(e)} \Delta_e,e^* \sum_{t=1}^n \delta_t(e, e^*) \tag{26}
\]

Second, we bound the regret associated with each item \(e \). The key idea is to decompose \(\delta_t(e, e^*) \) as:

\[
\delta_t(e, e^*) = \delta_t(e, e^*) \mathbb{1}\{T_{t-1}(e) \leq \ell_{e,e^*}\} + \delta_t(e, e^*) \mathbb{1}\{T_{t-1}(e) > \ell_{e,e^*}\} \tag{27}
\]

and then select \(\ell_{e,e^*} \) appropriately. By Lemma 9 in Appendix, the regret corresponding to \(\mathbb{1}\{T_{t-1}(e) > \ell_{e,e^*}\} \) is bounded as:

\[
\sum_{e^*=1}^{\rho(e)} \Delta_e,e^* \sum_{t=1}^n \delta_t(e, e^*) \mathbb{1}\{T_{t-1}(e) > \ell_{e,e^*}\} \leq \sum_{e^*=1}^{\rho(e)} \Delta_e,e^* \frac{4}{3} n^2 \tag{28}
\]

when \(\ell_{e,e^*} = \left\lfloor \frac{8}{\Delta_e,e^*} \log n \right\rfloor \). At the same time, the regret corresponding to \(\mathbb{1}\{T_{t-1}(e) \leq \ell_{e,e^*}\} \) is bounded as:

\[
\sum_{e^*=1}^{\rho(e)} \Delta_e,e^* \sum_{t=1}^n \delta_t(e, e^*) \mathbb{1}\{T_{t-1}(e) \leq \ell_{e,e^*}\} \leq \max_{w_1,\ldots,w_n} \left[\sum_{t=1}^n \sum_{e^*=1}^{\rho(e)} \Delta_e,e^* \delta_t(e, e^*) \mathbb{1}\{T_{t-1}(e) \leq \ell_{e,e^*}\} \right] \tag{29}
\]
Then for any \(\varepsilon \) are larger than \(\varepsilon \). Proof

The main idea is to decompose the expected cumulative regret of \(\text{OPM} \) and choose \(\varepsilon \) because \(\Delta_{e,\rho(e)} \)

The second term is bounded trivially as:

\[
\sum_{e^*=1}^{L} \Delta_{e,e^*} \leq 16 \Delta_{e,e^*} \log n + \sum_{e^*=1}^{\text{OPM}} \Delta_{e,e^*} \frac{4}{3} \pi^2.
\]

Our main claim is obtained by summing over all items \(e \).

\[\text{Theorem 5 (gap-free bound)} \quad \text{The expected cumulative regret of \(\text{OPM} \) is bounded as:} \]

\[R(n) \leq 8\sqrt{KLn} \log n + \frac{4}{3} \pi^2 L^2. \]

\[\text{Proof} \quad \text{The main idea is to decompose the expected cumulative regret of \(\text{OPM} \) into two parts, where the gaps} \]

\[\text{are larger than } \varepsilon \text{ and at most } \varepsilon. \text{ We analyze each part separately and then select } \varepsilon \text{ to get the desired result.} \]

Let \(\rho_e(e) \) be the number of items whose expected weight is higher than that of item \(e \) by more than \(\varepsilon \) and:

\[Z_{e,e^*}(n) = \mathbb{E}_{e_1,...,e_n} \left[\sum_{t=1}^{n} \delta_t(e, e^*) \right]. \]

Then for any \(\varepsilon \), the regret of \(\text{OPM} \) can be decomposed as:

\[R(n) = \sum_{e=1}^{L} \rho_e(e) \Delta_{e,e^*} Z_{e,e^*}(n) + \sum_{e=1}^{L} \rho_e(e) \Delta_{e,e^*} Z_{e,e^*}(n). \]

The first term can be bounded similarly to (31):

\[
\sum_{e=1}^{L} \sum_{e^*=1}^{L} \Delta_{e,e^*} Z_{e,e^*}(n) \leq \sum_{e=1}^{L} \frac{16}{\Delta_{e,\rho_e(e)}} \log n + \sum_{e=1}^{L} \sum_{e^*=\rho_e(e)+1}^{\rho(e)} \Delta_{e,e^*} \frac{4}{3} \pi^2 \\
\leq \frac{16}{\varepsilon} L \log n + \frac{4}{3} \pi^2 L^2.
\]

The second term is bounded trivially as:

\[\sum_{e=1}^{L} \rho_e(e) \Delta_{e,e^*} Z_{e,e^*}(n) \leq \varepsilon Kn \]

because \(\sum_{e=1}^{L} \sum_{e^*=1}^{\rho_e(e)+1} \delta_t(e, e^*) \leq K \) in any episode \(t \) (Theorem 3) and \(\Delta_{e,e^*} \leq \varepsilon. \) Finally, we get:

\[R(n) \leq \frac{16}{\varepsilon} L \log n + \varepsilon Kn + \frac{4}{3} \pi^2 L^2 \]

and choose \(\varepsilon = 4 \sqrt{\frac{L \log n}{Kn}}. \) This concludes our proof.
4.3 Improvement over General Upper Bounds

OPM is an instance of the UCB algorithm by Gai et al. (2012) for combinatorial semi-bandits (Section 6). So it is natural to ask if our upper bounds on the regret of OPM (Section 4.2) are tighter than those in stochastic combinatorial semi-bandits (Chen et al., 2013; Kveton et al., 2014b). In this section, we show that this is the case, by comparing our upper bounds to Kveton et al. (2014b).

Our $O(\sqrt{KL\ln n})$ gap-free upper bound (Theorem 5) has the same dependence on K, L, and n as the upper bound of Kveton et al. (2014b) (Theorem 6). The only notable improvement in our analysis is that we reduce the constant at the $\sqrt{n\log n}$ term from 47 to 8.

Our $O(L(1/\Delta)\log n)$ upper bound (Theorem 4) is tighter by a factor of K than the $O(KL(1/\Delta)\log n)$ upper bound of Kveton et al. (2014b) (Theorem 5). However, our notion of the gap, item-based (18), differs from that of Kveton et al. (2014b), solution-based. So hypothetically, the improvement in our bound may be solely due to a different notion of the gap. In the rest of this section, we argue that this is not the case.

Specifically, we consider the following \textit{uniform matroid bandit}. Let $E = \{1, \ldots, L\}$ be a set of L items and the family of independent sets be defined as:

$$\mathcal{I} = \{I \subseteq E : |I| \leq K\},$$

which means that any set of up to K items is feasible. Then $M = (E, \mathcal{I})$ is a rank-K \textit{uniform matroid}. Let P be a distribution over the weights of the items, where the weight of each item is distributed independently of the other items. The weight of item e is drawn i.i.d. from a Bernoulli distribution with mean:

$$\bar{w}(e) = \begin{cases} 0.5 & e \leq K \\ 0.5 - \Delta & \text{otherwise}, \end{cases}$$

where $0 < \Delta < 0.5$. Then $B_{\text{unif}} = (M, P)$ is our uniform matroid bandit. The optimal solution to B_{unif} is $A^* = \{1, \ldots, K\}$, the first K items with the largest weights.

The key property of B_{unif} is that our gaps coincide with those of Kveton et al. (2014b). In particular, for any suboptimal item $e \notin A^*$, the difference between the returns of A^* and the best suboptimal solution that contains item e is Δ; the same as the difference between the returns of item e and any optimal item $e^* \in A^*$ (18). Because the gaps Δ are the same, our $O(L(1/\Delta)\log n)$ bound is indeed a factor of K tighter than the $O(KL(1/\Delta)\log n)$ bound of Kveton et al. (2014b).

4.4 Lower Bounds

We prove gap-dependent and gap-free lower bounds on the regret in polymatroid bandits. These bounds are derived on a class of polymatroid bandits that are equivalent to K independent Bernoulli bandits.

Specifically, we consider the following \textit{partition matroid bandit}. Let $E = \{1, \ldots, L\}$ be a set of L items and B_1, \ldots, B_K be a partition of this set such that $|B_i| = L/K$, where L/K is an integer. Let the family of independent sets be defined as:

$$\mathcal{I} = \{I \subseteq E : (\forall k : |I \cap B_k| \leq 1)\}.$$

Then $M = (E, \mathcal{I})$ is a partition matroid of rank K. Let P be a probability distribution over the weights of the items, where the weight of each item is distributed independently of the other items. The weight of item e is drawn i.i.d. from a Bernoulli distribution with mean:

$$\bar{w}(e) = \begin{cases} 0.5 & \exists k : e = \min_{i \in B_k} i \\ 0.5 - \Delta & \text{otherwise}, \end{cases}$$

where $0 < \Delta < 0.5$. Then $B_{\text{part}} = (M, P)$ is our partition matroid bandit. The key property of B_{part} is that it is equivalent to K independent Bernoulli bandits with L/K arms each. The optimal item in each bandit is the item with the smallest index. So the optimal solution is $A^* = \{e : (\exists k : e = \min_{i \in B_k} i)\}$. We also note that all gaps (18) are Δ.

11
To formalize our gap-dependent lower bound, we introduce the notion of consistent algorithms. We say that the algorithm is consistent if for any partition matroid bandit, any \(e \not\in A^* \), and any \(\alpha > 0 \), \(\mathbb{E}[T_n(e)] = o(n^\alpha) \), where \(T_n(e) \) is the number of times that item \(e \) is observed in \(n \) episodes. In the rest of our analysis, we focus only on consistent algorithms. This is without loss of generality. In particular, by the definition of consistency, inconsistent algorithms perform poorly on some instances of our problem and therefore cannot achieve logarithmic regret on all instances.

Proposition 6 For any \(L \) and \(K \) such that \(L/K \) is an integer, and any \(\Delta \) such that \(0 < \Delta < 0.5 \), the regret of any consistent algorithm on partition matroid bandit \(B_{\text{part}} \) is bounded from below as:

\[
\liminf_{n \to \infty} \frac{R(n)}{\log n} \geq \frac{L - K}{4\Delta}.
\]

Proof The theorem is proved as follows:

\[
\liminf_{n \to \infty} \frac{R(n)}{\log n} \geq \sum_{k=1}^{K} \sum_{e \in B_k - A^*} \frac{\Delta}{\text{kl}(0.5 - \Delta, 0.5)} = \frac{(L - K)\Delta}{\text{kl}(0.5 - \Delta, 0.5)} \geq \frac{L - K}{4\Delta}, \tag{41}
\]

where \(\text{kl}(0.5 - \Delta, 0.5) \) is the KL divergence between two Bernoulli variables with means \(0.5 - \Delta \) and \(0.5 \). The first inequality is due to an existing lower bound for Bernoulli bandits (Lai and Robbins, 1985), which is applied separately to each part \(B_k \). The second inequality is due to \(\text{kl}(p, q) \leq \frac{(p-q)^2}{q(1-q)} \), where \(p = 0.5 - \Delta \) and \(q = 0.5 \).

Now we prove a gap-free lower bound.

Proposition 7 For any \(L \) and \(K \) such that \(L/K \) is an integer, and any \(n > 0 \), the regret of any algorithm on partition matroid bandit \(B_{\text{part}} \) is bounded from below as:

\[
R(n) \geq \frac{1}{20} \min(\sqrt{KLn}, Kn).
\]

Proof The matroid bandit \(B_{\text{part}} \) can be viewed as \(K \) independent Bernoulli bandits with \(L/K \) arms each. By Theorem 5.1 of Auer et al. (2002b), for any time horizon \(n \), the gap \(\Delta \) can be chosen such that the regret of any algorithm on any of the \(K \) bandits is at least \(\frac{1}{20} \min(\sqrt{(L/K)n}, n) \). So the regret due to all bandits is at least:

\[
K \frac{1}{20} \min \left\{ \sqrt{(L/K)n}, n \right\} = \frac{1}{20} \min \left\{ \sqrt{KLn}, Kn \right\}. \tag{42}
\]

Note that the bound of Auer et al. (2002b) is stated for the adversarial setting. However, because the worst-case environment in the proof is stochastic, it also applies to our problem.

4.5 Discussion of Theoretical Results

We prove two upper bounds on the expected cumulative regret of OPM:

- **Theorem 4**: \(O(L/(1/\Delta)\log n) \),
- **Theorem 5**: \(O(\sqrt{KLn \log n}) \),
where the gap is $\Delta = \min_{e} \min_{e' \leq e} \Delta_{e, e'}$. Both bounds are at most linear in K and L, and sublinear in n. In other words, they scale favorably with all quantities of interest and therefore we expect them to be practical.

Our $O(L(1/\Delta) \log n)$ upper bound matches the lower bound in Proposition 6 up to a constant and therefore is tight. It is also a factor of K tighter than the $O(KL(1/\Delta) \log n)$ upper bound of Kveton et al. (2014b) for a more general class of problems, stochastic combinatorial semi-bandits (Section 4.3). Our $O(\sqrt{KL} n \log n)$ upper bound matches the lower bound in Proposition 7 up to a factor of $\sqrt{\log n}$.

Our gap-dependent upper bound has the same form as the bound of Auer et al. (2002a) for multi-armed bandits. This suggests that the sample complexity of learning the maximum-weight basis of a polymatroid is similar to that of the multi-armed bandit problem. The only major difference is in the definitions of the gaps. In other words, learning in polymatroids is extremely sample efficient.

The key step in our analysis is showing that the difference in the expected returns of bases x^* and x_t can be expressed as the sum of the differences in the expected returns of intermediate solutions, all of which are bases such that the difference in the gains of any two consecutive bases has at most one negative entry. This decomposition is highly non-trivial and is derived based on the submodularity of our problem. An important aspect of our analysis is that the terms $\delta_i(e, e^*)$ (Theorem 3) are not bounded until it is necessary, such as in (30). Therefore, our upper bounds are tight and do not contain quantities that are not native to our problem, such as the maximum number of non-zero entries in $x \in \Theta$. In fact, under the assumption that $f(e) \leq 1$ for all items $e \in E$ (Section 2), our notion of complexity $K = f(E)$ is never larger than the maximum number of non-zero entries in any feasible solution $x \in \Theta$, a common quantity in the regret bounds of combinatorial bandits (Gai et al., 2012; Kveton et al., 2014b; Cesa-Bianchi and Lugosi, 2012; Audibert et al., 2014).

5. Experiments

We conduct three experiments. In Section 5.1, we evaluate the tightness of our regret bounds on a synthetic problem. In Section 5.2, we apply OPM to the problem of learning routing networks. Finally, in Section 5.3, we evaluate OPM on the problem of recommending diverse movies.

All experiments are episodic. In each episode, OPM chooses a basis x_t, observes the weights of all items that contribute to x_t, and updates its model of the world. In Sections 5.2 and 5.3, the performance of OPM is measured by the expected per-step return in n episodes:

$$\frac{1}{n} \mathbb{E}_{w_1, \ldots, w_n} \left[\sum_{t=1}^{n} \langle w_t, x_t \rangle \right],$$

which is the expected cumulative return in n episodes divided by n. We choose this metric because we want to report the quality of solutions and not just their regret, the difference from the optimal solution.

We compare OPM to two baselines. The first baseline is the maximum-weight basis x^* (12). This is our notion of optimality. The second baseline is an ε-greedy policy. The policy is implemented similarly to OPM. In particular, it is Algorithm 2 that is modified as follows. In each episode, $U_t(e)$ is set to $w_{T_{t-1}(e)}(e)$ for all items e with probability $1 - \varepsilon$. With probability ε, $U_t(e)$ is chosen randomly for all items e. The exploration rate is set as $\varepsilon = 0.1$. In all of our experiments, this is the best performing ε-greedy policy from the class of ε-greedy policies where $\varepsilon \in \{0, 0.1, \ldots, 1\}$.

5.1 Minimum-Cost Flow

In the first experiment, we evaluate OPM on a synthetic problem of learning minimum-cost flows. The experiment shows that our $O(L(1/\Delta) \log n)$ gap-dependent upper bound is practical. We experiment with larger values of Δ. In this setting, our gap-dependent upper bound is tighter than the gap-free one.

We experiment with a flow network with L source nodes and one sink node. The network is illustrated in Figure 1. The network is defined by three constraints. First, the maximum flow through any source node is 1. Second, the maximum flow through any two consecutive source nodes, e and $e + 1$ where $e = 2i - 1$ for $i \in \{1, \ldots, L/2\}$, is $\frac{3}{2}$. Third, the maximum flow is K. We assume that K is an integer multiple of $\frac{3}{2}$. The
Our problem is parametrized by K, L, and Δ. The optimal solution to the problem is to pass the maximum flow through the first $\frac{4}{3}K$ source nodes. Our problem can be formulated as minimizing a modular function on a polymatroid. The ground set E are L source nodes. The submodular function f captures the structure of the network and is defined as:

$$f(X) = \min \left\{ \sum_{i=1}^{L/2} \min \left\{ 1 \{ (2i - 1) \in X \} + 1 \{ 2i \in X \}, \frac{3}{2} \right\}, K \right\}.$$ (45)

Note that $f(X)$ can be computed in $O(L)$ time, by summing up L indicators. The weight of item e is drawn i.i.d. from a Bernoulli distribution with mean $\overline{w}(e)$ in (44), independently of the other items.

In Figure 2, we report the regret of OPM as a function of the number of episodes n for various settings of K and L. The gap is $\Delta = 0.5$. We observe three major trends. First, the regret grows on the order of $\log n$, as suggested by our $O(L(1/\Delta) \log n)$ upper bound. Second, the regret does not change much with K. This is consistent with the fact that our bound is independent of K. Finally, we note that the bound is surprisingly tight. In particular, for larger values of n, it is only about 10 times larger than the actual regret.
In Table 1, we report the regret of OPM in 10k episodes for various settings of K, L, and Δ. We observe that the regret depends on L and Δ as suggested by our $O(L(1/\Delta) \log n)$ upper bound. In particular, it does not change much with K, and it doubles as we double L or halve Δ. We note again that our upper bound is surprisingly tight, never more than 20 times larger than the actual regret.

5.2 Minimum Spanning Tree

In the second experiment, we apply OPM to the problem of learning routing networks for an Internet service provider (ISP). The routing network is a spanning tree (Oliveira and Pardalos, 2005). Our goal is to identify the spanning tree that has the lowest expected latency on its edges. Note that this is a minimization problem. Therefore, we refer to the return of a policy as its cost.

Our problem can be formulated as a graphic matroid bandit (Kveton et al., 2014a), which is a form of a polymatroid bandit. The ground set E are the edges of the graph that represents the topology of the network. We experiment with 6 networks from the RocketFuel dataset (Spring et al., 2004), with up to 300 nodes and 10^3 edges (Table 2). A set of edges is independent if it forms a forest. The corresponding rank function f is defined as:

$$f(X) = |\text{largest subset of } X \text{ that is a forest}|.$$

The value of $f(X)$ can be computed naively by a greedy algorithm in $O(|X|^2)$ time. The latency of edge e in episode t is:

$$w_t(e) = \bar{w}(e) - 1 + \varepsilon,$$

where $\bar{w}(e)$ is the expected latency, which is recorded in our dataset; and $\varepsilon \sim \text{Exp}(1)$ is exponential noise. The latency $\bar{w}(e)$ ranges from 1 to 64 milliseconds. Our noise model is motivated by the observation that the latency in ISP networks can be mostly explained by geographical distances (Choi et al., 2004), the expected
Table 2: The description of 6 ISP networks from our experiments and the expected per-step costs of building minimum spanning trees on these networks in 10^5 episodes. All latencies and costs are reported in milliseconds.

<table>
<thead>
<tr>
<th>ISP network</th>
<th>Number of nodes</th>
<th>Number of edges</th>
<th>Minimum latency</th>
<th>Maximum latency</th>
<th>Average latency</th>
<th>Optimal policy</th>
<th>ε-greedy policy</th>
<th>OPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1221</td>
<td>105</td>
<td>153</td>
<td>1</td>
<td>17</td>
<td>2.78</td>
<td>305.00</td>
<td>307.26 ± 0.06</td>
<td>305.82 ± 0.07</td>
</tr>
<tr>
<td>1239</td>
<td>315</td>
<td>972</td>
<td>1</td>
<td>64</td>
<td>3.20</td>
<td>629.88</td>
<td>677.51 ± 0.77</td>
<td>642.49 ± 0.09</td>
</tr>
<tr>
<td>1755</td>
<td>87</td>
<td>161</td>
<td>1</td>
<td>31</td>
<td>2.91</td>
<td>192.81</td>
<td>199.56 ± 0.13</td>
<td>194.92 ± 0.07</td>
</tr>
<tr>
<td>3257</td>
<td>161</td>
<td>328</td>
<td>1</td>
<td>47</td>
<td>4.30</td>
<td>550.85</td>
<td>570.21 ± 0.40</td>
<td>560.11 ± 0.08</td>
</tr>
<tr>
<td>3967</td>
<td>79</td>
<td>147</td>
<td>1</td>
<td>44</td>
<td>5.19</td>
<td>306.80</td>
<td>321.21 ± 0.22</td>
<td>308.66 ± 0.05</td>
</tr>
<tr>
<td>6461</td>
<td>141</td>
<td>374</td>
<td>1</td>
<td>45</td>
<td>6.32</td>
<td>376.27</td>
<td>423.78 ± 0.85</td>
<td>383.15 ± 0.08</td>
</tr>
</tbody>
</table>

Figure 4: **Left.** The return of three movie recommendation policies in up to 10^5 episodes. **Right.** Ten most popular movies in the optimal solution, \{e : x(\epsilon) > 0\}. These movies are shown in the order of decreasing popularity. The movie genre is highlighted if the associated movie is the most popular movie in that genre.

5.3 Diverse recommendations

In the third experiment, OPM is evaluated as a movie recommender. The recommender is used repeatedly by simulated users and the goal is to learn how to recommended diverse movies that maximize the satisfaction of an average user (Section 2.1). A system like this could be used in practice to identify trending movies.

We experiment with the MovieLens dataset (Lam and Herlocker, 2013), a dataset of 6 thousand people who assigned one million ratings to 4 thousand movies. The ground set E are 100 movies, 50 most and least
rated movies in our dataset. The movies cover 18 genres. The submodular function \(f \) is defined as:

\[
f(X) = |\text{movie genres covered by movies } X|.
\]

The value of \(f(X) \) can be computed in \(O(|X|) \) time. The weight of movie \(e \) in episode \(t \) is:

\[
w_t(e) = I \{ \text{user in episode } t \text{ watches movie } e \}.
\]

The user in episode \(t \) is chosen randomly from our pool of 6k users. We assume that the user watches movie \(e \) if that movie is rated by that user in our dataset. The expected weight \(\bar{w}(e) \) is the probability that movie \(e \) is watched by a randomly chosen user.

Our results are reported in Figure 4. As in Section 5.2, we observe two major trends. First, the return of OPM approaches that of the optimal solution \(x^* \) as the number of episodes increases. Second, OPM performs better than the \(\varepsilon \)-greedy policy after about 20k episodes. The optimal solution \(x^* \) is visualized in Figure 4. It contains 13 movies and therefore is extremely sparse.

6. Related Work

Polymatroids (Edmonds, 1970) are a generalization of matroids (Whitney, 1935). Therefore, our work can be viewed as a generalization of matroid semi-bandits (Kveton et al., 2014a). We significantly extend the work of Kveton et al. (2014a) and essentially show that the problem of maximizing a modular function subject to a submodular constraint can be learned efficiently. Our generalization is by far non-trivial. For instance, the key part of our analysis is a novel regret decomposition (Section 4.1), which leverages the submodularity of our constraint. This structure is not apparent in the work of Kveton et al. (2014a).

Our problem is an instance of a stochastic combinatorial semi-bandit (Gai et al., 2012). Gai et al. (2012) proposed and analyzed a UCB-like algorithm for solving this problem. Chen et al. (2013) and Kveton et al. (2014b) proved \(O(K^2L(1/\Delta) \log n) \) and \(O(KL(1/\Delta) \log n) \) upper bounds on the regret of this algorithm, respectively. The latter is tight (Kveton et al., 2014b). OPM is an instance of the UCB-like algorithm where the combinatorial optimization oracle is greedy. Our optimization problem is on a polymatroid and therefore we can derive a factor of \(K \) tighter gap-dependent regret bound (Theorem 4) than Kveton et al. (2014b). We note that our gap-free regret bound is of the same magnitude.

COMBAND (Cesa-Bianchi and Lugosi, 2012), follow-the-perturbed-leader (FPL) with geometric resampling (Neu and Bartok, 2013), and online stochastic mirror descent (OSMD) (Audibert et al., 2014) are three recently proposed algorithms for adversarial combinatorial semi-bandits. FPL does not achieve the optimal regret, but it is computationally efficient when the offline variant of the combinatorial optimization problem can be solved efficiently (Audibert et al., 2014). OSMD achieves the optimal regret, but it is not guaranteed to be computationally efficient if the projection on the convex hull of the feasible set cannot be implemented efficiently. In our problem, the convex hull is \(B_M(2) \) and the projection can be implemented in \(O(L^5) \) time (Suehiro et al., 2013). So the time complexity of a single step of OSMD is \(O(L^5) \). This is several orders of magnitude higher than the time complexity of OPM, \(O(L \log L) \); and not very practical for large values of \(L \). Finally, COMBAND is not guaranteed to be computationally efficient. Based on Section 5.4 of Cesa-Bianchi and Lugosi (2012), even on the problem of learning the minimum spanning tree, an instance of maximizing a modular function on a polymatroid.

Several recent papers studied the problem of learning how to maximize a submodular function (Guillory and Bilmes, 2011; Yue and Guestrin, 2011; Gabillon et al., 2013; Wen et al., 2013; Gabillon et al., 2014). These papers are only loosely related to our work because they study a different problem, which is learning how to maximize an unknown submodular function subject to a cardinality constraint. Our learning problem is maximizing an unknown modular function subject to a known submodular constraint.

7. Conclusions

In this work, we study the problem of learning to act greedily. We formulate the problem as learning how to maximize an unknown modular function on a known polymatroid in the bandit setting. Our formulation is
quite general and includes many popular problems, such as learning variants of the minimum spanning tree and minimum-cost flow. We propose a computationally-efficient method for solving the problem and prove two upper bounds on its regret. Our $O(L(1/\Delta) \log n)$ gap-dependent upper bound is tight up to a constant and our $O(\sqrt{KLn \log n})$ gap-free upper bound is tight up to a factor of $\sqrt{\log n}$. We evaluate our method on three problems, and show that it can learn near-optimal policies computationally and sample efficiently.

We leave open several questions of interest. For instance, our $O(\sqrt{KLn \log n})$ upper bound matches the $\Omega(\sqrt{KLn})$ lower bound only up to a factor of $\sqrt{\log n}$. We strongly believe that this factor can be eliminated by modifying the confidence radius in (15) as in Audibert and Bubeck (2009). We leave this for future work.

Thompson sampling (Thompson, 1933) often performs better in practice than UCB1 (Auer et al., 2002a). We believe that it is relatively straightforward to propose a Thompson-sampling variant of OPM, by replacing the UCBs in Algorithm 2 with sampling from the posterior on the mean weights (Wen et al., 2014). We also believe that the regret of this algorithm is bounded and this can be proved. The reason is that the frequentist analysis of Thompson sampling (Agrawal and Goyal, 2012) resembles that of UCB1 (Auer et al., 2002a). As a result, it is likely that the analysis of Thompson-sampling OPM can be carried out similarly to this paper.

In this work, we study one particular problem, maximization of a modular function on a polymatroid, in one particular learning setting, stochastic semi-bandits. It is an open question whether the ideas in our paper generalize to other polymatroid problems, such as maximizing a modular function on the intersection of two matroids (Papadimitriou and Steiglitz, 1998); and other learning variants of our problem, such as learning in the adversarial setting (Auer et al., 2002b) or with the full-bandit feedback (Dani et al., 2008).

References

Appendix A. Technical Lemmas

Lemma 8 Let $M = (E, f)$ be a polymatroid, V be the vertices of base polyhedron B_M in (2), and Θ be the feasible solutions in (8). Then $V = \Theta$.

Proof The key observation is that B_M is a convex polytope because it is an intersection of convex polytope P_M (1) and hyperplane $\sum_{e \in E} x(e) = K$. Therefore, any vector $x \in B_M$ is a convex combination of V. We prove $V = \Theta$ by proving that $V \subseteq \Theta$ and $\Theta \subseteq V$.

First, we prove that $V \subseteq \Theta$. By contradiction, suppose that there exists $x \in V$ such that $x \notin \Theta$. Since x is a vertex of a convex polytope, there must exist a weight vector w such that x is a unique optimum in (3). By the definition of Greedy, $x = \text{Greedy}(M, w)$ and therefore $x \in \Theta$. This is clearly a contradiction.

Second, we prove that $\Theta \subseteq V$. By contradiction, suppose that there exists $x \in \Theta$ such that $x \notin V$. Since B_M is a convex polytope, the solution x can be expressed as a convex combination of the vertices in V. For simplicity of exposition, suppose that $x = \alpha x_1 + (1 - \alpha)x_2$, where $\{x_1, x_2\} \subset V$ and $\alpha \in (0, 1)$. Let e_i be the first item in Greedy where $x_1(e_i) < x_2(e_i)$. Since x is generated by Greedy, and f is a monotonic and submodular function, $x(e_i) \geq x_2(e_i)$. This is clearly a contradiction since $x(e_i) \neq x_2(e_i)$. The case where $x_1(e_i) > x_2(e_i)$ is proved similarly. Finally, suppose that $x(e_i) \neq x_2(e_i)$ does not happen for any e_i. Then $x_1 = x_2$, which is also a contradiction. □

Lemma 9 For all items e and e^* \begin{equation}
\mathbb{E}_{w_1, \ldots, w_n} \left[\sum_{t=1}^{n} \delta_t(e, e^*) 1\{T_{t-1}(e) > \ell\} \right] \leq \frac{4}{3} \pi^2
\end{equation}
when $\ell = \left\lfloor \frac{8}{\Delta_{e, e^*}} \log n \right\rfloor$.

Proof First, we note that $\delta_t(e, e^*) \leq 1$. Moreover, by Theorem 3, the event $\delta_t(e, e^*) > 0$ implies that we observe the weight of item e and $U_t(e) \geq U_t(e^*)$. Based on these facts, it follows that:

\begin{equation}
\sum_{t=1}^{n} \delta_t(e, e^*) 1\{T_{t-1}(e) > \ell\} \leq \sum_{t=\ell+1}^{n} 1\{U_t(e) \geq U_t(e^*), T_{t-1}(e) > \ell\}
\end{equation}

\begin{equation}
\leq \sum_{t=\ell+1}^{n} \sum_{s=1}^{t} \sum_{s_1=\ell+1}^{t} 1\{\hat{w}_{s_1}(e) + c_{t-1, s_1} \geq \hat{w}_{s_1}(e^*) + c_{t-1, s_1}\}
\end{equation}

\begin{equation}
= \sum_{t=\ell}^{n} \sum_{s=\ell+1}^{t+1} 1\{\hat{w}_{s_1}(e) + c_{t, s_1} \geq \hat{w}_{s_1}(e^*) + c_{t, s_1}\}. \quad (50)
\end{equation}

When $\hat{w}_{s_1}(e) + c_{t, s_1} \geq \hat{w}_{s_1}(e^*) + c_{t, s_1}$, at least one of the following events must happen:

\begin{equation}
\hat{w}_{s_1}(e^*) \leq \hat{w}(e^*) - c_{t, s_1} \quad (51)
\end{equation}

\begin{equation}
\hat{w}_{s_1}(e) \geq \hat{w}(e) + c_{t, s_1} \quad (52)
\end{equation}

\begin{equation}
\hat{w}(e^*) < \hat{w}(e) + 2c_{t, s_1}. \quad (53)
\end{equation}

We bound the probability of the first two events, (51) and (52), using Hoeffding’s inequality:

\begin{equation}
P(\hat{w}_{s_1}(e^*) \leq \hat{w}(e^*) - c_{t, s_1}) \leq \exp[-4 \log t] = t^{-4} \quad (54)
\end{equation}

\begin{equation}
P(\hat{w}_{s_1}(e) \geq \hat{w}(e) + c_{t, s_1}) \leq \exp[-4 \log t] = t^{-4}. \quad (55)
\end{equation}
When \(s_e \geq \frac{8}{\Delta_{e,e^*}} \log n \), the third event (53) cannot happen because:

\[
\bar{w}(e^*) - \bar{w}(e) - 2c_{t,s_e} = \Delta_{e,e^*} - 2\sqrt{\frac{2\log t}{s_e}} \geq 0.
\] (56)

This is guaranteed when \(\ell = \left\lfloor \frac{8}{\Delta_{e,e^*}} \log n \right\rfloor \). Finally, we combine all of our claims and get:

\[
\mathbb{E}_{\bar{w}_1, \ldots, \bar{w}_n} \left[\sum_{t=1}^n \delta_t(e, e^*) 1\{T_{t-1}(e) > \ell\} \right] \leq \sum_{t=1}^{n-1} \sum_{s=1}^{t+1} \sum_{s_e=\ell+1}^{t+1} [P(\bar{w}_s(e^*) \leq \bar{w}(e^*) - c_{t,s_e}) + P(\bar{w}_s(e) \geq \bar{w}(e) + c_{t,s_e})]
\]

\[
\leq \sum_{t=1}^{\infty} 2(t+1)^2 t^{-4}
\]

\[
\leq \sum_{t=1}^{\infty} 8t^{-2}
\]

\[
= \frac{4}{3} \pi^2.
\] (57)

The last equality follows from the fact that \(\sum_{t=1}^{\infty} t^{-2} = \frac{\pi^2}{6} \).

Lemma 10 (Kveton et al. (2014a)) Let \(\Delta_1 \geq \ldots \geq \Delta_K \) be a sequence of \(K \) positive numbers. Then:

\[
\left[\Delta_1 \frac{1}{\Delta_1^2} + \sum_{k=2}^K \Delta_k \left(\frac{1}{\Delta_k^2} - \frac{1}{\Delta_{k-1}^2} \right) \right] \leq \frac{2}{\Delta_K^2}.
\]

Proof First, we note that:

\[
\left[\Delta_1 \frac{1}{\Delta_1^2} + \sum_{k=2}^K \Delta_k \left(\frac{1}{\Delta_k^2} - \frac{1}{\Delta_{k-1}^2} \right) \right] = \sum_{k=1}^{K-1} \frac{\Delta_k - \Delta_{k+1}}{\Delta_k^2} + \frac{1}{\Delta_K}.
\] (58)

Second, by our assumption, \(\Delta_k \geq \Delta_{k+1} \) for all \(k < K \). Therefore:

\[
\sum_{k=1}^{K-1} \frac{\Delta_k - \Delta_{k+1}}{\Delta_k^2} + \frac{1}{\Delta_K} \leq \sum_{k=1}^{K-1} \frac{\Delta_k - \Delta_{k+1}}{\Delta_k \Delta_{k+1}} + \frac{1}{\Delta_K}
\]

\[
= \sum_{k=1}^{K-1} \left[\frac{1}{\Delta_{k+1}} - \frac{1}{\Delta_k} \right] + \frac{1}{\Delta_K}
\]

\[
= \frac{2}{\Delta_K} - \frac{1}{\Delta_1}
\]

\[
< \frac{2}{\Delta_K}.
\] (59)

This concludes our proof.